Forecasting a Photovoltaic Power Output with Ordinary Differential Equation Solutions using the “Aladin” model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099462" target="_blank" >RIV/61989100:27240/16:86099462 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting a Photovoltaic Power Output with Ordinary Differential Equation Solutions using the “Aladin” model
Popis výsledku v původním jazyce
Accurate forecasting of the renewable power generation is important for the system operation, utilization and integration in the electricity grid. The photovoltaic output power is primarily dependent on the solar radiation, which short-term local forecasts, available from the numerical model “Aladin”, can enter power models, trained with corresponding real time-series of few last days, to predict the following day electricity production. Presented daily updated polynomial derivative models can describe fluctuant function relations between input solar irradiance time-series and the scalar output power, which conventional regression solutions usually fail. Differential polynomial network is a new neural network type, which can define and solve a selective form of the linear ordinary sum differential equation to model 1-variable function series. Partial sum relative fraction terms, produced in all layer nodes of the network backward structure, can substitute for the time derivatives at several time-points of data series.
Název v anglickém jazyce
Forecasting a Photovoltaic Power Output with Ordinary Differential Equation Solutions using the “Aladin” model
Popis výsledku anglicky
Accurate forecasting of the renewable power generation is important for the system operation, utilization and integration in the electricity grid. The photovoltaic output power is primarily dependent on the solar radiation, which short-term local forecasts, available from the numerical model “Aladin”, can enter power models, trained with corresponding real time-series of few last days, to predict the following day electricity production. Presented daily updated polynomial derivative models can describe fluctuant function relations between input solar irradiance time-series and the scalar output power, which conventional regression solutions usually fail. Differential polynomial network is a new neural network type, which can define and solve a selective form of the linear ordinary sum differential equation to model 1-variable function series. Partial sum relative fraction terms, produced in all layer nodes of the network backward structure, can substitute for the time derivatives at several time-points of data series.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in intelligent systems and computing. Volume 565
ISBN
978-3-319-60833-4
ISSN
2194-5357
e-ISSN
neuvedeno
Počet stran výsledku
10
Strana od-do
28-37
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Marrákeš
Datum konání akce
21. 11. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—