Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099104" target="_blank" >RIV/61989100:27240/16:86099104 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/16:86099104
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0378779616301092" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0378779616301092</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.epsr.2016.04.003" target="_blank" >10.1016/j.epsr.2016.04.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks
Popis výsledku v původním jazyce
The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. Power load forecasting is important for an economically efficient operation and effective control of power systems and enables to plan the load of generating units. A precise load forecasting is required to avoid high generation costs and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to high cost preparations. Differential polynomial neural network is a new neural network type, which decomposes and solves the selective general partial differential equation, which can model a searched function on the bases of observed data samples. It produces an output sum combination of convergent series of selected relative polynomial derivative terms, which can substitute for an ordinary differential equation solution to describe and forecast real data time-series. Partial derivative terms of several time-point variables substitute for the time derivatives of the converted general ordinary differential equation. The operating principles of the proposed method differ significantly from other conventional neural network techniques. (C) 2016 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks
Popis výsledku anglicky
The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. Power load forecasting is important for an economically efficient operation and effective control of power systems and enables to plan the load of generating units. A precise load forecasting is required to avoid high generation costs and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to high cost preparations. Differential polynomial neural network is a new neural network type, which decomposes and solves the selective general partial differential equation, which can model a searched function on the bases of observed data samples. It produces an output sum combination of convergent series of selected relative polynomial derivative terms, which can substitute for an ordinary differential equation solution to describe and forecast real data time-series. Partial derivative terms of several time-point variables substitute for the time derivatives of the converted general ordinary differential equation. The operating principles of the proposed method differ significantly from other conventional neural network techniques. (C) 2016 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electric Power Systems Research
ISSN
0378-7796
e-ISSN
—
Svazek periodika
137
Číslo periodika v rámci svazku
137
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
113-123
Kód UT WoS článku
000376806100014
EID výsledku v databázi Scopus
2-s2.0-84964345705