Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099104" target="_blank" >RIV/61989100:27240/16:86099104 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/16:86099104

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0378779616301092" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0378779616301092</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.epsr.2016.04.003" target="_blank" >10.1016/j.epsr.2016.04.003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks

  • Popis výsledku v původním jazyce

    The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. Power load forecasting is important for an economically efficient operation and effective control of power systems and enables to plan the load of generating units. A precise load forecasting is required to avoid high generation costs and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to high cost preparations. Differential polynomial neural network is a new neural network type, which decomposes and solves the selective general partial differential equation, which can model a searched function on the bases of observed data samples. It produces an output sum combination of convergent series of selected relative polynomial derivative terms, which can substitute for an ordinary differential equation solution to describe and forecast real data time-series. Partial derivative terms of several time-point variables substitute for the time derivatives of the converted general ordinary differential equation. The operating principles of the proposed method differ significantly from other conventional neural network techniques. (C) 2016 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Short-term power load forecasting with ordinary differential equation substitutions of polynomial networks

  • Popis výsledku anglicky

    The purpose of the short-term electricity demand forecasting is to forecast in advance the system load, represented by the sum of all consumers load at the same time. Power load forecasting is important for an economically efficient operation and effective control of power systems and enables to plan the load of generating units. A precise load forecasting is required to avoid high generation costs and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to high cost preparations. Differential polynomial neural network is a new neural network type, which decomposes and solves the selective general partial differential equation, which can model a searched function on the bases of observed data samples. It produces an output sum combination of convergent series of selected relative polynomial derivative terms, which can substitute for an ordinary differential equation solution to describe and forecast real data time-series. Partial derivative terms of several time-point variables substitute for the time derivatives of the converted general ordinary differential equation. The operating principles of the proposed method differ significantly from other conventional neural network techniques. (C) 2016 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electric Power Systems Research

  • ISSN

    0378-7796

  • e-ISSN

  • Svazek periodika

    137

  • Číslo periodika v rámci svazku

    137

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    11

  • Strana od-do

    113-123

  • Kód UT WoS článku

    000376806100014

  • EID výsledku v databázi Scopus

    2-s2.0-84964345705