Short-term Power Demand Forecasting using the Differential Polynomial Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F15%3A86090324" target="_blank" >RIV/61989100:27740/15:86090324 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/eprint/QI5qIq6CaFEFGT4bkx2h/full" target="_blank" >http://www.tandfonline.com/eprint/QI5qIq6CaFEFGT4bkx2h/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/18756891.2015.1001952" target="_blank" >10.1080/18756891.2015.1001952</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-term Power Demand Forecasting using the Differential Polynomial Neural Network
Popis výsledku v původním jazyce
Power demand forecasting is important for economically efficient operation and effective control of power systems and enables to plan the load of generating unit. The purpose of the short-term electricity demand forecasting is to forecast in advance thesystem load, represented by the sum of all consumers load at the same time. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacitypreparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms which can substitute for the ord
Název v anglickém jazyce
Short-term Power Demand Forecasting using the Differential Polynomial Neural Network
Popis výsledku anglicky
Power demand forecasting is important for economically efficient operation and effective control of power systems and enables to plan the load of generating unit. The purpose of the short-term electricity demand forecasting is to forecast in advance thesystem load, represented by the sum of all consumers load at the same time. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacitypreparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms which can substitute for the ord
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computational Intelligence Systems
ISSN
1875-6891
e-ISSN
—
Svazek periodika
Vol. 8
Číslo periodika v rámci svazku
No. 2 (2015)
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
10
Strana od-do
297-306
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—