Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Power Demand Daily Predictions using the Combined Differential Polynomial Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86090330" target="_blank" >RIV/61989100:27740/14:86090330 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-319-08156-4_8#page-1" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-08156-4_8#page-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-08156-4_8" target="_blank" >10.1007/978-3-319-08156-4_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Power Demand Daily Predictions using the Combined Differential Polynomial Network

  • Popis výsledku v původním jazyce

    Power demand prediction is important for the economically efficient operation and effective control of power systems and enables to plan the load of generating unit. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Cooperation on the electricity grid requires from all providers to foresee the load within a sufficient accuracy. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms, which can substitute for the ordinary differential equation, describing 1-paramet

  • Název v anglickém jazyce

    Power Demand Daily Predictions using the Combined Differential Polynomial Network

  • Popis výsledku anglicky

    Power demand prediction is important for the economically efficient operation and effective control of power systems and enables to plan the load of generating unit. A precise load forecasting is required to avoid high generation cost and the spinning reserve capacity. Under-prediction of the demands leads to an insufficient reserve capacity preparation and can threaten the system stability, on the other hand, over-prediction leads to an unnecessarily large reserve that leads to a high cost preparations. Cooperation on the electricity grid requires from all providers to foresee the load within a sufficient accuracy. Differential polynomial neural network is a new neural network type, which forms and resolves an unknown general partial differential equation of an approximation of a searched function, described by data observations. It generates convergent sum series of relative polynomial derivative terms, which can substitute for the ordinary differential equation, describing 1-paramet

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Soft Computing. Volume 303

  • ISBN

    978-3-319-08155-7

  • ISSN

    1615-3871

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    73-82

  • Název nakladatele

    Springer Verlag

  • Místo vydání

    London

  • Místo konání akce

    Ostrava

  • Datum konání akce

    23. 6. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku