Supervised Competition Using Joined Growing Neural Gas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86090545" target="_blank" >RIV/61989100:27740/14:86090545 - isvavai.cz</a>
Výsledek na webu
<a href="http://sdiwc.net/digital-library/supervised-competition-using-joined-growing-neural-gas" target="_blank" >http://sdiwc.net/digital-library/supervised-competition-using-joined-growing-neural-gas</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supervised Competition Using Joined Growing Neural Gas
Popis výsledku v původním jazyce
Competitive learning is well-known method to process data. Various goals may be achieved using competi- tive learning such as classifcation or vector quantiza- tion. In this paper, we present a different insight into the principle of supervised competitive learning. An in- novative approach to the supervised self-organization is suggested. The method is based on different handling of input data labels which encode the classifcation. When the label has appropriate format then it is possible to use it within the competitive process in the same way as any input data element. Such approach is as effective as standard supervised methods and has some positive attributes such as the soft classification ability.
Název v anglickém jazyce
Supervised Competition Using Joined Growing Neural Gas
Popis výsledku anglicky
Competitive learning is well-known method to process data. Various goals may be achieved using competi- tive learning such as classifcation or vector quantiza- tion. In this paper, we present a different insight into the principle of supervised competitive learning. An in- novative approach to the supervised self-organization is suggested. The method is based on different handling of input data labels which encode the classifcation. When the label has appropriate format then it is possible to use it within the competitive process in the same way as any input data element. Such approach is as effective as standard supervised methods and has some positive attributes such as the soft classification ability.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0055" target="_blank" >EE2.3.30.0055: Nové kreativní týmy v prioritách vědeckého bádání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů