Semantics-Based Document Categorization Employing Semi-Supervised Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43910951" target="_blank" >RIV/62156489:43110/17:43910951 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/978-1-5225-1759-7.ch077" target="_blank" >http://dx.doi.org/10.4018/978-1-5225-1759-7.ch077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-5225-1759-7.ch077" target="_blank" >10.4018/978-1-5225-1759-7.ch077</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semantics-Based Document Categorization Employing Semi-Supervised Learning
Popis výsledku v původním jazyce
The automated categorization of unstructured textual documents according to their semantic contents plays important role particularly linked with the ever growing volume of such data originating from the Internet. Having a sufficient number of labeled examples, a suitable supervised machine learning-based classifier can be trained. When no labeling is available, an unsupervised learning method can be applied, however, the missing label information often leads to worse classification results. This chapter demonstrates a method based on semi-supervised learning when a smallish set of manually labeled examples improves the categorization process in comparison with clustering, and the results are comparable with the supervised learning output. For the illustration, a real-world dataset coming from the Internet is used as the input of the supervised, unsupervised, and semi-supervised learning. The results are shown for different number of the starting labeled samples used as "seeds" to automatically label the remaining volume of unlabeled items.
Název v anglickém jazyce
Semantics-Based Document Categorization Employing Semi-Supervised Learning
Popis výsledku anglicky
The automated categorization of unstructured textual documents according to their semantic contents plays important role particularly linked with the ever growing volume of such data originating from the Internet. Having a sufficient number of labeled examples, a suitable supervised machine learning-based classifier can be trained. When no labeling is available, an unsupervised learning method can be applied, however, the missing label information often leads to worse classification results. This chapter demonstrates a method based on semi-supervised learning when a smallish set of manually labeled examples improves the categorization process in comparison with clustering, and the results are comparable with the supervised learning output. For the illustration, a real-world dataset coming from the Internet is used as the input of the supervised, unsupervised, and semi-supervised learning. The results are shown for different number of the starting labeled samples used as "seeds" to automatically label the remaining volume of unlabeled items.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Artificial Intelligence: Concepts, Methodologies, Tools, and Applications
ISBN
978-1-5225-1759-7
Počet stran výsledku
29
Strana od-do
1884-1912
Počet stran knihy
3048
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—