Adaptive text-data clustering by the semi-supervised learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F09%3A00147093" target="_blank" >RIV/62156489:43110/09:00147093 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive text-data clustering by the semi-supervised learning
Popis výsledku v původním jazyce
Many current real-world applications as, for example, Internet e-commerce, have to deal with huge volumes of predominantly textual data. The data include hidden information like potential categories of similar customers, suppliers, producers, etc. Thesecategories usually can change during the time. The paper discusses the possibilities of looking for clusters that represent individual classes. One of the main problems is the standard clustering methods give often unsatisfying results by unsupervised-learning methods. However, having very small initial subsets of good examples, the clustering can dramatically improve its results, providing much better clusters applicable to categorizing in the future. This method is known as the semi-supervised learning (SSL) from a limited number of examples. In the paper, some results of applying the SSL method to real-world unlabeled data instances are demonstrated and compared with selected traditional clustering algorithms. Using labeled examples
Název v anglickém jazyce
Adaptive text-data clustering by the semi-supervised learning
Popis výsledku anglicky
Many current real-world applications as, for example, Internet e-commerce, have to deal with huge volumes of predominantly textual data. The data include hidden information like potential categories of similar customers, suppliers, producers, etc. Thesecategories usually can change during the time. The paper discusses the possibilities of looking for clusters that represent individual classes. One of the main problems is the standard clustering methods give often unsatisfying results by unsupervised-learning methods. However, having very small initial subsets of good examples, the clustering can dramatically improve its results, providing much better clusters applicable to categorizing in the future. This method is known as the semi-supervised learning (SSL) from a limited number of examples. In the paper, some results of applying the SSL method to real-world unlabeled data instances are demonstrated and compared with selected traditional clustering algorithms. Using labeled examples
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ASIS 2009 -- Adaptívne siete v informačných systémoch
ISBN
978-80-8094-593-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
Nitra
Místo vydání
Univerzita Konštantína Filozofa v Nitre
Místo konání akce
Nitra
Datum konání akce
1. 1. 2009
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—