Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A TFETI domain decomposition solver for elastoplastic problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86090576" target="_blank" >RIV/61989100:27740/14:86090576 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68145535:_____/14:00425341 RIV/68145535:_____/14:00427638 RIV/67985556:_____/14:00427638

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0096300314000253" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300314000253</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2013.12.186" target="_blank" >10.1016/j.amc.2013.12.186</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A TFETI domain decomposition solver for elastoplastic problems

  • Popis výsledku v původním jazyce

    We propose an algorithm for the efficient parallel implementation of elastoplastic problems with hardening based on the so-called TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. We consider an associated elastoplastic model with the von Mises plastic criterion and the linear isotropic hardening law. Such a model is discretized by the implicit Euler method in time and the consequent one time step elastoplastic problem by the finite element method in space. The latterresults in a system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI domain decomposition method. The proposed TFETI based algorithm was implemented in Matlab parallel environment and its performance was illustrated on a 3D elastoplastic benchmark. Numerical results

  • Název v anglickém jazyce

    A TFETI domain decomposition solver for elastoplastic problems

  • Popis výsledku anglicky

    We propose an algorithm for the efficient parallel implementation of elastoplastic problems with hardening based on the so-called TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. We consider an associated elastoplastic model with the von Mises plastic criterion and the linear isotropic hardening law. Such a model is discretized by the implicit Euler method in time and the consequent one time step elastoplastic problem by the finite element method in space. The latterresults in a system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI domain decomposition method. The proposed TFETI based algorithm was implemented in Matlab parallel environment and its performance was illustrated on a 3D elastoplastic benchmark. Numerical results

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    APPLIED MATHEMATICS AND COMPUTATION

  • ISSN

    0096-3003

  • e-ISSN

  • Svazek periodika

    231

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    634-653

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus