Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving elastoplastic problems with different preconditioners

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86090630" target="_blank" >RIV/61989100:27240/15:86090630 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/15:86090630 RIV/61989100:27230/15:86090630

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1063/1.4913031" target="_blank" >http://dx.doi.org/10.1063/1.4913031</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4913031" target="_blank" >10.1063/1.4913031</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving elastoplastic problems with different preconditioners

  • Popis výsledku v původním jazyce

    This paper illustrates the parallel solution of elastoplastic problems with hardening based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method with preconditioning. We consider time step problems formulated by nonlinear variational equations in terms of displacements. To treat nonlinearity and nonsmoothness we use semismooth Newton method. In each Newton iteration we have to solve linear system of equations and for its numerical solution we use TFETI domain decomposition method with preconditioners (Dirichlet and lumped). We demonstrate our approach on von Mises plasticity with isotropic hardening using the return mapping concept for one time step.

  • Název v anglickém jazyce

    Solving elastoplastic problems with different preconditioners

  • Popis výsledku anglicky

    This paper illustrates the parallel solution of elastoplastic problems with hardening based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method with preconditioning. We consider time step problems formulated by nonlinear variational equations in terms of displacements. To treat nonlinearity and nonsmoothness we use semismooth Newton method. In each Newton iteration we have to solve linear system of equations and for its numerical solution we use TFETI domain decomposition method with preconditioners (Dirichlet and lumped). We demonstrate our approach on von Mises plasticity with isotropic hardening using the return mapping concept for one time step.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    AIP Conference Proceedings. Volume 1648

  • ISBN

    978-0-7354-1287-3

  • ISSN

    0094-243X

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    American Institute of Physics

  • Místo vydání

    Melville

  • Místo konání akce

    Rhodos

  • Datum konání akce

    22. 9. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000355339705028