Anomalous mechanical strengths and shear deformation paths of Al2O3 polymorphs with high ionicity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F16%3A10237916" target="_blank" >RIV/61989100:27740/16:10237916 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10364387
Výsledek na webu
<a href="http://pubs.rsc.org/-/content/getauthorversionpdf/C5RA25796D" target="_blank" >http://pubs.rsc.org/-/content/getauthorversionpdf/C5RA25796D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c5ra25796d" target="_blank" >10.1039/c5ra25796d</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomalous mechanical strengths and shear deformation paths of Al2O3 polymorphs with high ionicity
Popis výsledku v původním jazyce
Alumina (Al2O3) formed by selective oxidization provides an effective way to protect aluminide alloys against corrosion for sustainable applications. Despite a broad interest and investigations on Al2O3 polymorphs such as α-Al2O3 and θ-Al2O3, their intrinsic mechanical strengths and atomic deformation mechanisms are not yet fully understood. In this research, density functional theory is used to show that the calculated shear moduli and mechanical strengths of θ-Al2O3 are substantially lower than those of α-Al2O3, and this explains why θ-Al2O3 is much weaker than α-Al2O3. An analysis of shear deformation paths and electronic structure indicates that the longest Al-O ionic bonds are responsible for the lattice instability of both polymorphs during shear, showing they have different anisotropic features. This study gives a novel view on the failure of thermally grown α-Al2O3 and θ-Al2O3, and it should help to improve the performance of thermal barrier coatings. (C) 2016 The Royal Society of Chemistry.
Název v anglickém jazyce
Anomalous mechanical strengths and shear deformation paths of Al2O3 polymorphs with high ionicity
Popis výsledku anglicky
Alumina (Al2O3) formed by selective oxidization provides an effective way to protect aluminide alloys against corrosion for sustainable applications. Despite a broad interest and investigations on Al2O3 polymorphs such as α-Al2O3 and θ-Al2O3, their intrinsic mechanical strengths and atomic deformation mechanisms are not yet fully understood. In this research, density functional theory is used to show that the calculated shear moduli and mechanical strengths of θ-Al2O3 are substantially lower than those of α-Al2O3, and this explains why θ-Al2O3 is much weaker than α-Al2O3. An analysis of shear deformation paths and electronic structure indicates that the longest Al-O ionic bonds are responsible for the lattice instability of both polymorphs during shear, showing they have different anisotropic features. This study gives a novel view on the failure of thermally grown α-Al2O3 and θ-Al2O3, and it should help to improve the performance of thermal barrier coatings. (C) 2016 The Royal Society of Chemistry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RSC Advances
ISSN
2046-2069
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
12885-12892
Kód UT WoS článku
000369546100020
EID výsledku v databázi Scopus
2-s2.0-84956935392