Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient data-driven task allocation for future many-cluster on-chip systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F17%3A10237489" target="_blank" >RIV/61989100:27740/17:10237489 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8035120" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8035120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/HPCS.2017.81" target="_blank" >10.1109/HPCS.2017.81</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient data-driven task allocation for future many-cluster on-chip systems

  • Popis výsledku v původním jazyce

    Continuous demand for higher performance is adding more pressure on hardware designers to provide faster machines with low energy consumption. Recent technological advancements allow placing a group of silicon dies on top of a conventional interposer (silicon layer), which provides space to integrate logic and interconnection resources to manage active processing cores. However, such large resource availability requires an adequate Program eXecution Model (PXM) as well as an efficient mechanism to allocate resources in the system. From this perspective, fine-grain data-driven PXMs represent an attractive solution to reduce the cost of synchronising concurrent activities. The contribution of this work is twofold. First, a hardware architecture called TALHES - a Task ALlocator for HEterogeneous System is proposed to support scheduling of multi-threaded applications (adhering to an explicit data-driven PXM). TALHES introduces a Network-on-Chip (NoC) extension: i) while on-chip 2D-mesh NoCs are used to support locality of computations in the execution of a single task; ii) a global task scheduler integrated into the silicon interposer orchestrates application tasks among different clusters of cores (eventually with different computing capabilities). The second contribution of the paper is a simulation framework that is tailored to support the analysis of such fine-grain data-driven applications. In this work, Linux Containers are used to abstract and efficiently simulate clusters of cores (i.e., a single die), as well as the behaviour of the global scheduling unit. © 2017 IEEE.

  • Název v anglickém jazyce

    Efficient data-driven task allocation for future many-cluster on-chip systems

  • Popis výsledku anglicky

    Continuous demand for higher performance is adding more pressure on hardware designers to provide faster machines with low energy consumption. Recent technological advancements allow placing a group of silicon dies on top of a conventional interposer (silicon layer), which provides space to integrate logic and interconnection resources to manage active processing cores. However, such large resource availability requires an adequate Program eXecution Model (PXM) as well as an efficient mechanism to allocate resources in the system. From this perspective, fine-grain data-driven PXMs represent an attractive solution to reduce the cost of synchronising concurrent activities. The contribution of this work is twofold. First, a hardware architecture called TALHES - a Task ALlocator for HEterogeneous System is proposed to support scheduling of multi-threaded applications (adhering to an explicit data-driven PXM). TALHES introduces a Network-on-Chip (NoC) extension: i) while on-chip 2D-mesh NoCs are used to support locality of computations in the execution of a single task; ii) a global task scheduler integrated into the silicon interposer orchestrates application tasks among different clusters of cores (eventually with different computing capabilities). The second contribution of the paper is a simulation framework that is tailored to support the analysis of such fine-grain data-driven applications. In this work, Linux Containers are used to abstract and efficiently simulate clusters of cores (i.e., a single die), as well as the behaviour of the global scheduling unit. © 2017 IEEE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Conference on High Performance Computing and Simulation, HPCS 2017 : proceedings

  • ISBN

    978-1-5386-3250-5

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    503-510

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Ženeva

  • Datum konání akce

    17. 7. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku