Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A scalable and low-power FPGA-aware network-on-chip architecture

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10240673" target="_blank" >RIV/61989100:27740/18:10240673 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-61566-0_37" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-61566-0_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-61566-0_37" target="_blank" >10.1007/978-3-319-61566-0_37</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A scalable and low-power FPGA-aware network-on-chip architecture

  • Popis výsledku v původním jazyce

    The growing demand for high-performance capabilities in data centers (DCs) leads to adopt heterogeneous solutions. The advantage of specialised hardware is a better support for different types of workloads, and a reduction of the power consumption. Among the others, FPGAs offer the unique capability to provide hardware specialisation and low power consumption. In this context, large arrays of simple and reconfigurable processing elements (PEs), known as coarse-grain reconfigurable arrays (CGRAs), represent a flexible solution for supporting heterogeneous workloads through a specialised instruction set that provides high performance in specific application domains (e.g., image recognition, patterns classification). However, efficient and scalable interconnections are required to sustain throughput and performance of CGRAs. To this end, networks-on-chip (NoCs) have been recognised as a viable solution for better data packet communication. In this paper, we propose an FPGA-aware NoC design targeting CGRAs with 128+ PEs. The proposed design leverages on a two-level topology to scale well with the increasing number of PEs, while the introduction of a software-defined reconfiguration capability offers the opportunity to tailor the set of resources assigned to a specific application. Partitions of physical resources (i.e., virtual domains) are built over the physical topology to meet the required performance, as well as to ease sharing physical chip resources among applications. Experimental evaluation shows the efficiency of our solution regarding used FPGA resources and power consumption.

  • Název v anglickém jazyce

    A scalable and low-power FPGA-aware network-on-chip architecture

  • Popis výsledku anglicky

    The growing demand for high-performance capabilities in data centers (DCs) leads to adopt heterogeneous solutions. The advantage of specialised hardware is a better support for different types of workloads, and a reduction of the power consumption. Among the others, FPGAs offer the unique capability to provide hardware specialisation and low power consumption. In this context, large arrays of simple and reconfigurable processing elements (PEs), known as coarse-grain reconfigurable arrays (CGRAs), represent a flexible solution for supporting heterogeneous workloads through a specialised instruction set that provides high performance in specific application domains (e.g., image recognition, patterns classification). However, efficient and scalable interconnections are required to sustain throughput and performance of CGRAs. To this end, networks-on-chip (NoCs) have been recognised as a viable solution for better data packet communication. In this paper, we propose an FPGA-aware NoC design targeting CGRAs with 128+ PEs. The proposed design leverages on a two-level topology to scale well with the increasing number of PEs, while the introduction of a software-defined reconfiguration capability offers the opportunity to tailor the set of resources assigned to a specific application. Partitions of physical resources (i.e., virtual domains) are built over the physical topology to meet the required performance, as well as to ease sharing physical chip resources among applications. Experimental evaluation shows the efficiency of our solution regarding used FPGA resources and power consumption.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Systems and Computing. Volume 611

  • ISBN

    978-3-319-61565-3

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Počet stran výsledku

    14

  • Strana od-do

    407-420

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Turín

  • Datum konání akce

    10. 7. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000432998800037