Odd-Even Layer Effect of Bismuth Oxychalcogenide Nanosurfaces: A First-Principles Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242875" target="_blank" >RIV/61989100:27740/19:10242875 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05790" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05790</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.9b05790" target="_blank" >10.1021/acs.jpcc.9b05790</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Odd-Even Layer Effect of Bismuth Oxychalcogenide Nanosurfaces: A First-Principles Study
Popis výsledku v původním jazyce
Recently, a second-type two-dimensional (2D) semiconductor Bi2O2Se with high carrier mobility was successfully fabricated by using the chemical vapor deposition (CVD) method. So far the surface-related property of Bi2O2Se remains a mystery to us. To theoretically explore such surface properties, we investigated the stability and electronic structure of the Bi2O2Se (100) and (110) surfaces by first-principles computations. It is found that (100) surfaces possess both the semiconducting nature and comparable stability as traditional adopted (001) surfaces. Thickness-dependent oscillation behavior is observed in the surface energy and band gap values of (100) surfaces, which can be attributed to the odd-even layer effect. Further studies indicate that odd layers will achieve reduced band gaps compared to the bulk phase while the ones with even layers exhibit larger values, and a similar effect in Bi2O2Te and Bi2O2S is also verified due to the same crystalline structure. To understand such an odd-even layer effect, electronic structure is elaborated and reveals that the local atomic mismatch will result in a different spatial distribution of p orbitals in Bi atoms, thus inducing distinct electronic properties. These new findings demonstrate the potential usage in nanoelectronics and optoelectronics based on the nanoslab of bismuth oxychalcogenides, which opens up a promising way for realizing the manipulation on the band gap in semiconductor.
Název v anglickém jazyce
Odd-Even Layer Effect of Bismuth Oxychalcogenide Nanosurfaces: A First-Principles Study
Popis výsledku anglicky
Recently, a second-type two-dimensional (2D) semiconductor Bi2O2Se with high carrier mobility was successfully fabricated by using the chemical vapor deposition (CVD) method. So far the surface-related property of Bi2O2Se remains a mystery to us. To theoretically explore such surface properties, we investigated the stability and electronic structure of the Bi2O2Se (100) and (110) surfaces by first-principles computations. It is found that (100) surfaces possess both the semiconducting nature and comparable stability as traditional adopted (001) surfaces. Thickness-dependent oscillation behavior is observed in the surface energy and band gap values of (100) surfaces, which can be attributed to the odd-even layer effect. Further studies indicate that odd layers will achieve reduced band gaps compared to the bulk phase while the ones with even layers exhibit larger values, and a similar effect in Bi2O2Te and Bi2O2S is also verified due to the same crystalline structure. To understand such an odd-even layer effect, electronic structure is elaborated and reveals that the local atomic mismatch will result in a different spatial distribution of p orbitals in Bi atoms, thus inducing distinct electronic properties. These new findings demonstrate the potential usage in nanoelectronics and optoelectronics based on the nanoslab of bismuth oxychalcogenides, which opens up a promising way for realizing the manipulation on the band gap in semiconductor.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
39
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
24024-24030
Kód UT WoS článku
000489086300030
EID výsledku v databázi Scopus
—