Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Odd-Even Layer Effect of Bismuth Oxychalcogenide Nanosurfaces: A First-Principles Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242875" target="_blank" >RIV/61989100:27740/19:10242875 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05790" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05790</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.9b05790" target="_blank" >10.1021/acs.jpcc.9b05790</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Odd-Even Layer Effect of Bismuth Oxychalcogenide Nanosurfaces: A First-Principles Study

  • Popis výsledku v původním jazyce

    Recently, a second-type two-dimensional (2D) semiconductor Bi2O2Se with high carrier mobility was successfully fabricated by using the chemical vapor deposition (CVD) method. So far the surface-related property of Bi2O2Se remains a mystery to us. To theoretically explore such surface properties, we investigated the stability and electronic structure of the Bi2O2Se (100) and (110) surfaces by first-principles computations. It is found that (100) surfaces possess both the semiconducting nature and comparable stability as traditional adopted (001) surfaces. Thickness-dependent oscillation behavior is observed in the surface energy and band gap values of (100) surfaces, which can be attributed to the odd-even layer effect. Further studies indicate that odd layers will achieve reduced band gaps compared to the bulk phase while the ones with even layers exhibit larger values, and a similar effect in Bi2O2Te and Bi2O2S is also verified due to the same crystalline structure. To understand such an odd-even layer effect, electronic structure is elaborated and reveals that the local atomic mismatch will result in a different spatial distribution of p orbitals in Bi atoms, thus inducing distinct electronic properties. These new findings demonstrate the potential usage in nanoelectronics and optoelectronics based on the nanoslab of bismuth oxychalcogenides, which opens up a promising way for realizing the manipulation on the band gap in semiconductor.

  • Název v anglickém jazyce

    Odd-Even Layer Effect of Bismuth Oxychalcogenide Nanosurfaces: A First-Principles Study

  • Popis výsledku anglicky

    Recently, a second-type two-dimensional (2D) semiconductor Bi2O2Se with high carrier mobility was successfully fabricated by using the chemical vapor deposition (CVD) method. So far the surface-related property of Bi2O2Se remains a mystery to us. To theoretically explore such surface properties, we investigated the stability and electronic structure of the Bi2O2Se (100) and (110) surfaces by first-principles computations. It is found that (100) surfaces possess both the semiconducting nature and comparable stability as traditional adopted (001) surfaces. Thickness-dependent oscillation behavior is observed in the surface energy and band gap values of (100) surfaces, which can be attributed to the odd-even layer effect. Further studies indicate that odd layers will achieve reduced band gaps compared to the bulk phase while the ones with even layers exhibit larger values, and a similar effect in Bi2O2Te and Bi2O2S is also verified due to the same crystalline structure. To understand such an odd-even layer effect, electronic structure is elaborated and reveals that the local atomic mismatch will result in a different spatial distribution of p orbitals in Bi atoms, thus inducing distinct electronic properties. These new findings demonstrate the potential usage in nanoelectronics and optoelectronics based on the nanoslab of bismuth oxychalcogenides, which opens up a promising way for realizing the manipulation on the band gap in semiconductor.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Svazek periodika

    123

  • Číslo periodika v rámci svazku

    39

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    24024-24030

  • Kód UT WoS článku

    000489086300030

  • EID výsledku v databázi Scopus