Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10245439" target="_blank" >RIV/61989100:27740/20:10245439 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/e22080863" target="_blank" >https://doi.org/10.3390/e22080863</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/e22080863" target="_blank" >10.3390/e22080863</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption

  • Popis výsledku v původním jazyce

    Approximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle of their acceleration. Furthermore, the paper contains a description of the functions of this software package and their parameters, as well as simple examples of using this software package to calculate these measures of complexity of an artificial time series and the time series of a complex real-world system represented by the course of supercomputer infrastructure power consumption. These time series were also used to test the speed of this package and to compare its speed with another R package pracma. The results show that TSEntropies is up to 100 times faster than pracma and another important result is that the computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their original versions. At the very end of this paper, the possible use of this software package TSEntropies is proposed.

  • Název v anglickém jazyce

    New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption

  • Popis výsledku anglicky

    Approximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle of their acceleration. Furthermore, the paper contains a description of the functions of this software package and their parameters, as well as simple examples of using this software package to calculate these measures of complexity of an artificial time series and the time series of a complex real-world system represented by the course of supercomputer infrastructure power consumption. These time series were also used to test the speed of this package and to compare its speed with another R package pracma. The results show that TSEntropies is up to 100 times faster than pracma and another important result is that the computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their original versions. At the very end of this paper, the possible use of this software package TSEntropies is proposed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Entropy

  • ISSN

    1099-4300

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000564074400001

  • EID výsledku v databázi Scopus

    2-s2.0-85089832315