New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10245439" target="_blank" >RIV/61989100:27740/20:10245439 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/e22080863" target="_blank" >https://doi.org/10.3390/e22080863</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e22080863" target="_blank" >10.3390/e22080863</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption
Popis výsledku v původním jazyce
Approximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle of their acceleration. Furthermore, the paper contains a description of the functions of this software package and their parameters, as well as simple examples of using this software package to calculate these measures of complexity of an artificial time series and the time series of a complex real-world system represented by the course of supercomputer infrastructure power consumption. These time series were also used to test the speed of this package and to compare its speed with another R package pracma. The results show that TSEntropies is up to 100 times faster than pracma and another important result is that the computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their original versions. At the very end of this paper, the possible use of this software package TSEntropies is proposed.
Název v anglickém jazyce
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption
Popis výsledku anglicky
Approximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle of their acceleration. Furthermore, the paper contains a description of the functions of this software package and their parameters, as well as simple examples of using this software package to calculate these measures of complexity of an artificial time series and the time series of a complex real-world system represented by the course of supercomputer infrastructure power consumption. These time series were also used to test the speed of this package and to compare its speed with another R package pracma. The results show that TSEntropies is up to 100 times faster than pracma and another important result is that the computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their original versions. At the very end of this paper, the possible use of this software package TSEntropies is proposed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000564074400001
EID výsledku v databázi Scopus
2-s2.0-85089832315