CLIJ: GPU-accelerated image processing for everyone
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10245447" target="_blank" >RIV/61989100:27740/20:10245447 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s41592-019-0650-1" target="_blank" >https://doi.org/10.1038/s41592-019-0650-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41592-019-0650-1" target="_blank" >10.1038/s41592-019-0650-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CLIJ: GPU-accelerated image processing for everyone
Popis výsledku v původním jazyce
Modern microscopy generates staggering amounts of multidimensional image data that place increasing demands on processing flexibility and efficiency. One way to speed up image processing is to exploit the parallel processing capabilities of graphics processing units (GPU). Recently, GPU-acceleration was used in specific image-processing tasks such as reconstruction, image quality determination, image restoration, segmentation or visualization. However, in such tools, GPU code is fulfilling one specific purpose and is not intended to be reused in other contexts. By contrast, most common image processing tasks are solved by building flexible workflows consisting of simple operations in widely used tools such as ImageJ and Fiji. Most of these operations were however programmed at a time when GPUs were not commonly used for general-purpose processing. Therefore, typical workflows consisting of core ImageJ operations do not take advantage of GPUs. To address this issue, we developed a flexible and reusable platform for GPU-acceleration in Fiji.
Název v anglickém jazyce
CLIJ: GPU-accelerated image processing for everyone
Popis výsledku anglicky
Modern microscopy generates staggering amounts of multidimensional image data that place increasing demands on processing flexibility and efficiency. One way to speed up image processing is to exploit the parallel processing capabilities of graphics processing units (GPU). Recently, GPU-acceleration was used in specific image-processing tasks such as reconstruction, image quality determination, image restoration, segmentation or visualization. However, in such tools, GPU code is fulfilling one specific purpose and is not intended to be reused in other contexts. By contrast, most common image processing tasks are solved by building flexible workflows consisting of simple operations in widely used tools such as ImageJ and Fiji. Most of these operations were however programmed at a time when GPUs were not commonly used for general-purpose processing. Therefore, typical workflows consisting of core ImageJ operations do not take advantage of GPUs. To address this issue, we developed a flexible and reusable platform for GPU-acceleration in Fiji.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Methods
ISSN
1548-7091
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
2
Strana od-do
5-6
Kód UT WoS článku
000508582900003
EID výsledku v databázi Scopus
2-s2.0-85075364591