Suitability for coding of the Colebrook's flow friction relation expressed by symbolic regression approximations of the Wright-ω function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10252491" target="_blank" >RIV/61989100:27740/20:10252491 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.31181/rme200101174p" target="_blank" >https://doi.org/10.31181/rme200101174p</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31181/rme200101174p" target="_blank" >10.31181/rme200101174p</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Suitability for coding of the Colebrook's flow friction relation expressed by symbolic regression approximations of the Wright-ω function
Popis výsledku v původním jazyce
This article analyses a form of the empirical Colebrook's pipe flow friction equation given originally by the Lambert W-function and recently also by the Wright ω-function. These special functions are used to explicitly express the unknown flow friction factor of the Colebrook equation, which is in its classical formulation given implicitly. Explicit approximations of the Colebrook equation based on approximations of the Wright ω-function given by an asymptotic expansion and symbolic regression were analyzed in respect of speed and accuracy. Numerical experiments on 8 million Sobol's quasi-Monte points clearly show that also both approaches lead to approximately the same complexity in terms of speed of execution in computers. However, the relative error of the developed symbolic regression-based approximations is reduced significantly, in comparison with the classical basic asymptotic expansion. These numerical results indicate promising results of artificial intelligence (symbolic regression) for developing fast and accurate explicit approximations.
Název v anglickém jazyce
Suitability for coding of the Colebrook's flow friction relation expressed by symbolic regression approximations of the Wright-ω function
Popis výsledku anglicky
This article analyses a form of the empirical Colebrook's pipe flow friction equation given originally by the Lambert W-function and recently also by the Wright ω-function. These special functions are used to explicitly express the unknown flow friction factor of the Colebrook equation, which is in its classical formulation given implicitly. Explicit approximations of the Colebrook equation based on approximations of the Wright ω-function given by an asymptotic expansion and symbolic regression were analyzed in respect of speed and accuracy. Numerical experiments on 8 million Sobol's quasi-Monte points clearly show that also both approaches lead to approximately the same complexity in terms of speed of execution in computers. However, the relative error of the developed symbolic regression-based approximations is reduced significantly, in comparison with the classical basic asymptotic expansion. These numerical results indicate promising results of artificial intelligence (symbolic regression) for developing fast and accurate explicit approximations.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reports in Mechanical Engineering
ISSN
2683-5894
e-ISSN
2683-5894
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
6
Strana od-do
174-179
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85102761601