Review of new flow friction equations: Constructing Colebrook's explicit correlations accurately
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F20%3A10246479" target="_blank" >RIV/61989100:27740/20:10246479 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23967/j.rimni.2020.09.001" target="_blank" >https://doi.org/10.23967/j.rimni.2020.09.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23967/j.rimni.2020.09.001" target="_blank" >10.23967/j.rimni.2020.09.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Review of new flow friction equations: Constructing Colebrook's explicit correlations accurately
Popis výsledku v původním jazyce
Using only a limited number of computationally expensive functions, we show a way how to construct accurate and computationally efficient approximations of the Colebrook equation for flow friction based on the asymptotic series expansion of the Wright w-function and on symbolic regression. The results are verified with 8 million of Quasi-Monte Carlo points covering the domain of interest for engineers. In comparison with the built-in "wrightOmega" feature of Matlab R2016a, the herein introduced related approximations of the Wright omega-function significantly accelerate the explicit solution of the Colebrook equation. Such balance between speed and accuracy could be achieved only using symbolic regression, a computational intelligence approach that can find optimal coefficients and the best structure of the equation. The presented numerical experiments show that the novel symbolic regression approximation reduced the maximal relative error from 0.045% to 0.00337%, i.e. more than 13 times, even the complexity remains almost unchanged. Moreover, we also provide a novel highly precise symbolic regression approximation (max. relative error 0.000024%), which, for the same speed as asymptotic expansion, reduces the relative error by factor 219. This research is motivated by estimation of flow rate using electrical parameters of pumps where direct measurement is not always possible such as in offshore underwater pipelines.
Název v anglickém jazyce
Review of new flow friction equations: Constructing Colebrook's explicit correlations accurately
Popis výsledku anglicky
Using only a limited number of computationally expensive functions, we show a way how to construct accurate and computationally efficient approximations of the Colebrook equation for flow friction based on the asymptotic series expansion of the Wright w-function and on symbolic regression. The results are verified with 8 million of Quasi-Monte Carlo points covering the domain of interest for engineers. In comparison with the built-in "wrightOmega" feature of Matlab R2016a, the herein introduced related approximations of the Wright omega-function significantly accelerate the explicit solution of the Colebrook equation. Such balance between speed and accuracy could be achieved only using symbolic regression, a computational intelligence approach that can find optimal coefficients and the best structure of the equation. The presented numerical experiments show that the novel symbolic regression approximation reduced the maximal relative error from 0.045% to 0.00337%, i.e. more than 13 times, even the complexity remains almost unchanged. Moreover, we also provide a novel highly precise symbolic regression approximation (max. relative error 0.000024%), which, for the same speed as asymptotic expansion, reduces the relative error by factor 219. This research is motivated by estimation of flow rate using electrical parameters of pumps where direct measurement is not always possible such as in offshore underwater pipelines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria
ISSN
0213-1315
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
000595371000003
EID výsledku v databázi Scopus
—