Colebrook's Flow Friction Explicit Approximations Based on Fixed-Point Iterative Cycles and Symbolic Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242723" target="_blank" >RIV/61989100:27740/19:10242723 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2079-3197/7/3/48" target="_blank" >https://www.mdpi.com/2079-3197/7/3/48</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/computation7030048" target="_blank" >10.3390/computation7030048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Colebrook's Flow Friction Explicit Approximations Based on Fixed-Point Iterative Cycles and Symbolic Regression
Popis výsledku v původním jazyce
The logarithmic Colebrook flow friction equation is implicitly given in respect to an unknown flow friction factor. Traditionally, an explicit approximation of the Colebrook equation requires evaluation of computationally demanding transcendental functions, such as logarithmic, exponential, non-integer power, Lambert W and Wright omega functions. Conversely, we herein present several computationally cheap explicit approximations of the Colebrook equation that require only one logarithmic function in the initial stage, whilst for the remaining iterations the cheap Pade approximant of the first order is used instead. Moreover, symbolic regression was used for the development of a novel starting point, which significantly reduces the error of internal iterations compared with the fixed value staring point. Despite the starting point using a simple rational function, it reduces the relative error of the approximation with one internal cycle from 1.81% to 0.156% (i.e., by a factor of 11.6), whereas the relative error of the approximation with two internal cycles is reduced from 0.317% to 0.0259% (i.e., by a factor of 12.24). This error analysis uses a sample with 2 million quasi-Monte Carlo points and the Sobol sequence.
Název v anglickém jazyce
Colebrook's Flow Friction Explicit Approximations Based on Fixed-Point Iterative Cycles and Symbolic Regression
Popis výsledku anglicky
The logarithmic Colebrook flow friction equation is implicitly given in respect to an unknown flow friction factor. Traditionally, an explicit approximation of the Colebrook equation requires evaluation of computationally demanding transcendental functions, such as logarithmic, exponential, non-integer power, Lambert W and Wright omega functions. Conversely, we herein present several computationally cheap explicit approximations of the Colebrook equation that require only one logarithmic function in the initial stage, whilst for the remaining iterations the cheap Pade approximant of the first order is used instead. Moreover, symbolic regression was used for the development of a novel starting point, which significantly reduces the error of internal iterations compared with the fixed value staring point. Despite the starting point using a simple rational function, it reduces the relative error of the approximation with one internal cycle from 1.81% to 0.156% (i.e., by a factor of 11.6), whereas the relative error of the approximation with two internal cycles is reduced from 0.317% to 0.0259% (i.e., by a factor of 12.24). This error analysis uses a sample with 2 million quasi-Monte Carlo points and the Sobol sequence.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computation
ISSN
2079-3197
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000487943500002
EID výsledku v databázi Scopus
—