Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242741" target="_blank" >RIV/61989100:27740/19:10242741 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.hindawi.com/journals/ace/2018/5451034/" target="_blank" >https://www.hindawi.com/journals/ace/2018/5451034/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2018/5451034" target="_blank" >10.1155/2018/5451034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction
Popis výsledku v původním jazyce
The empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of turbulent flows (4000 < Re < 10(8)) through pipes with roughness between negligible relative roughness (epsilon/D -> 0) to very rough (up to epsilon/D = 0.05). The Colebrook equation includes the flow friction factor lambda in an implicit logarithmic form, lambda being a function of the Reynolds number Re and the relative roughness of inner pipe surface epsilon/D: lambda = f(lambda, Re, epsilon/D). To evaluate the error introduced by the many available explicit approximations to the Colebrook equation, lambda approximate to f(Re, epsilon/D), it is necessary to determinate the value of the friction factor lambda from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while the most of the other presented methods in this paper do require. The methods based on the accelerated Householder's approach (3rd order, 2nd order: Halley's and Schroder's method, and 1st order: Newton-Raphson) require few iterations less, while the three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook' equations expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation with an error of no more than 0.0617%.
Název v anglickém jazyce
Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction
Popis výsledku anglicky
The empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of turbulent flows (4000 < Re < 10(8)) through pipes with roughness between negligible relative roughness (epsilon/D -> 0) to very rough (up to epsilon/D = 0.05). The Colebrook equation includes the flow friction factor lambda in an implicit logarithmic form, lambda being a function of the Reynolds number Re and the relative roughness of inner pipe surface epsilon/D: lambda = f(lambda, Re, epsilon/D). To evaluate the error introduced by the many available explicit approximations to the Colebrook equation, lambda approximate to f(Re, epsilon/D), it is necessary to determinate the value of the friction factor lambda from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while the most of the other presented methods in this paper do require. The methods based on the accelerated Householder's approach (3rd order, 2nd order: Halley's and Schroder's method, and 1st order: Newton-Raphson) require few iterations less, while the three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook' equations expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation with an error of no more than 0.0617%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Civil Engineering
ISSN
1687-8086
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
Article number 5451034
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000460259400001
EID výsledku v databázi Scopus
2-s2.0-85051786909