Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242741" target="_blank" >RIV/61989100:27740/19:10242741 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.hindawi.com/journals/ace/2018/5451034/" target="_blank" >https://www.hindawi.com/journals/ace/2018/5451034/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2018/5451034" target="_blank" >10.1155/2018/5451034</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction

  • Popis výsledku v původním jazyce

    The empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of turbulent flows (4000 &lt; Re &lt; 10(8)) through pipes with roughness between negligible relative roughness (epsilon/D -&gt; 0) to very rough (up to epsilon/D = 0.05). The Colebrook equation includes the flow friction factor lambda in an implicit logarithmic form, lambda being a function of the Reynolds number Re and the relative roughness of inner pipe surface epsilon/D: lambda = f(lambda, Re, epsilon/D). To evaluate the error introduced by the many available explicit approximations to the Colebrook equation, lambda approximate to f(Re, epsilon/D), it is necessary to determinate the value of the friction factor lambda from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while the most of the other presented methods in this paper do require. The methods based on the accelerated Householder&apos;s approach (3rd order, 2nd order: Halley&apos;s and Schroder&apos;s method, and 1st order: Newton-Raphson) require few iterations less, while the three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook&apos; equations expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation with an error of no more than 0.0617%.

  • Název v anglickém jazyce

    Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction

  • Popis výsledku anglicky

    The empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of turbulent flows (4000 &lt; Re &lt; 10(8)) through pipes with roughness between negligible relative roughness (epsilon/D -&gt; 0) to very rough (up to epsilon/D = 0.05). The Colebrook equation includes the flow friction factor lambda in an implicit logarithmic form, lambda being a function of the Reynolds number Re and the relative roughness of inner pipe surface epsilon/D: lambda = f(lambda, Re, epsilon/D). To evaluate the error introduced by the many available explicit approximations to the Colebrook equation, lambda approximate to f(Re, epsilon/D), it is necessary to determinate the value of the friction factor lambda from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while the most of the other presented methods in this paper do require. The methods based on the accelerated Householder&apos;s approach (3rd order, 2nd order: Halley&apos;s and Schroder&apos;s method, and 1st order: Newton-Raphson) require few iterations less, while the three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook&apos; equations expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation with an error of no more than 0.0617%.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20104 - Transport engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Civil Engineering

  • ISSN

    1687-8086

  • e-ISSN

  • Svazek periodika

    2018

  • Číslo periodika v rámci svazku

    Article number 5451034

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    000460259400001

  • EID výsledku v databázi Scopus

    2-s2.0-85051786909