Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10240156" target="_blank" >RIV/61989100:27740/18:10240156 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-9717/6/8/130" target="_blank" >https://www.mdpi.com/2227-9717/6/8/130</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr6080130" target="_blank" >10.3390/pr6080130</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation
Popis výsledku v původním jazyce
The Colebrook equation is implicitly given in respect to the unknown flow friction factor lambda; lambda = zeta(Re, epsilon*, lambda) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton-Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three-or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma-Guha-Gupta, Sharma-Sharma, Sharma-Arora, Dzunic-Petkovic-Petkovic; Bi-Ren-Wu, Chun-Neta based on Kung-Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.
Název v anglickém jazyce
Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation
Popis výsledku anglicky
The Colebrook equation is implicitly given in respect to the unknown flow friction factor lambda; lambda = zeta(Re, epsilon*, lambda) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton-Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three-or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma-Guha-Gupta, Sharma-Sharma, Sharma-Arora, Dzunic-Petkovic-Petkovic; Bi-Ren-Wu, Chun-Neta based on Kung-Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Processes
ISSN
2227-9717
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000443615900034
EID výsledku v databázi Scopus
2-s2.0-85051805790