Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10240156" target="_blank" >RIV/61989100:27740/18:10240156 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-9717/6/8/130" target="_blank" >https://www.mdpi.com/2227-9717/6/8/130</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr6080130" target="_blank" >10.3390/pr6080130</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation

  • Popis výsledku v původním jazyce

    The Colebrook equation is implicitly given in respect to the unknown flow friction factor lambda; lambda = zeta(Re, epsilon*, lambda) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton-Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three-or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma-Guha-Gupta, Sharma-Sharma, Sharma-Arora, Dzunic-Petkovic-Petkovic; Bi-Ren-Wu, Chun-Neta based on Kung-Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.

  • Název v anglickém jazyce

    Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation

  • Popis výsledku anglicky

    The Colebrook equation is implicitly given in respect to the unknown flow friction factor lambda; lambda = zeta(Re, epsilon*, lambda) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton-Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three-or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma-Guha-Gupta, Sharma-Sharma, Sharma-Arora, Dzunic-Petkovic-Petkovic; Bi-Ren-Wu, Chun-Neta based on Kung-Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Processes

  • ISSN

    2227-9717

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    000443615900034

  • EID výsledku v databázi Scopus

    2-s2.0-85051805790