What Can Students Learn While Solving Colebrook's Flow Friction Equation?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10242740" target="_blank" >RIV/61989100:27740/19:10242740 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2311-5521/4/3/114" target="_blank" >https://www.mdpi.com/2311-5521/4/3/114</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/fluids4030114" target="_blank" >10.3390/fluids4030114</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What Can Students Learn While Solving Colebrook's Flow Friction Equation?
Popis výsledku v původním jazyce
Even a relatively simple equation such as Colebrook's offers a lot of possibilities to students to increase their computational skills. The Colebrook's equation is implicit in the flow friction factor and, therefore, it needs to be solved iteratively or using explicit approximations, which need to be developed using different approaches. Various procedures can be used for iterative methods, such as single the fixed-point iterative method, Newton-Raphson, and other types of multi-point iterative methods, iterative methods in a combination with Pade polynomials, special functions such as Lambert W, artificial intelligence such as neural networks, etc. In addition, to develop explicit approximations or to improve their accuracy, regression analysis, genetic algorithms, and curve fitting techniques can be used too. In this learning numerical exercise, a few numerical examples will be shown along with the explanation of the estimated pedagogical impact for university students. Students can see what the difference is between the classical vs. floating-point algebra used in computers.
Název v anglickém jazyce
What Can Students Learn While Solving Colebrook's Flow Friction Equation?
Popis výsledku anglicky
Even a relatively simple equation such as Colebrook's offers a lot of possibilities to students to increase their computational skills. The Colebrook's equation is implicit in the flow friction factor and, therefore, it needs to be solved iteratively or using explicit approximations, which need to be developed using different approaches. Various procedures can be used for iterative methods, such as single the fixed-point iterative method, Newton-Raphson, and other types of multi-point iterative methods, iterative methods in a combination with Pade polynomials, special functions such as Lambert W, artificial intelligence such as neural networks, etc. In addition, to develop explicit approximations or to improve their accuracy, regression analysis, genetic algorithms, and curve fitting techniques can be used too. In this learning numerical exercise, a few numerical examples will be shown along with the explanation of the estimated pedagogical impact for university students. Students can see what the difference is between the classical vs. floating-point algebra used in computers.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fluids
ISSN
2311-5521
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000488029400045
EID výsledku v databázi Scopus
2-s2.0-85071490960