One-Log Call Iterative Solution of the Colebrook Equation for Flow Friction Based on Pade Polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F18%3A10240153" target="_blank" >RIV/61989100:27740/18:10240153 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/11/7/1825" target="_blank" >https://www.mdpi.com/1996-1073/11/7/1825</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en11071825" target="_blank" >10.3390/en11071825</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
One-Log Call Iterative Solution of the Colebrook Equation for Flow Friction Based on Pade Polynomials
Popis výsledku v původním jazyce
The 80 year-old empirical Colebrook function zeta, widely used as an informal standard for hydraulic resistance, relates implicitly the unknown flow friction factor lambda, with the known Reynolds number Re and the known relative roughness of a pipe inner surface epsilon* ; lambda = zeta(Re, epsilon* ,lambda). It is based on logarithmic law in the form that captures the unknown flow friction factor l in a way that it cannot be extracted analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers an accurate and computationally cheap iterative algorithm based on Pade polynomials with only one log-call in total for the whole procedure (expensive log-calls are substituted with Pade polynomials in each iteration with the exception of the first). The proposed modification is computationally less demanding compared with the standard approaches of engineering practice, but does not influence the accuracy or the number of iterations required to reach the final balanced solution.
Název v anglickém jazyce
One-Log Call Iterative Solution of the Colebrook Equation for Flow Friction Based on Pade Polynomials
Popis výsledku anglicky
The 80 year-old empirical Colebrook function zeta, widely used as an informal standard for hydraulic resistance, relates implicitly the unknown flow friction factor lambda, with the known Reynolds number Re and the known relative roughness of a pipe inner surface epsilon* ; lambda = zeta(Re, epsilon* ,lambda). It is based on logarithmic law in the form that captures the unknown flow friction factor l in a way that it cannot be extracted analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers an accurate and computationally cheap iterative algorithm based on Pade polynomials with only one log-call in total for the whole procedure (expensive log-calls are substituted with Pade polynomials in each iteration with the exception of the first). The proposed modification is computationally less demanding compared with the standard approaches of engineering practice, but does not influence the accuracy or the number of iterations required to reach the final balanced solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energies
ISSN
1996-1073
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000441830500209
EID výsledku v databázi Scopus
2-s2.0-85051172015