Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Accurate and efficient explicit approximations of the colebrook flow friction equation based on the wright ω-function

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10240873" target="_blank" >RIV/61989100:27740/19:10240873 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/7/1/34" target="_blank" >https://www.mdpi.com/2227-7390/7/1/34</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math7010034" target="_blank" >10.3390/math7010034</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Accurate and efficient explicit approximations of the colebrook flow friction equation based on the wright ω-function

  • Popis výsledku v původním jazyce

    The Colebrook equation is a popular model for estimating friction loss coefficients in water and gas pipes. The model is implicit in the unknown flow friction factor, f. To date, the captured flow friction factor, f, can be extracted from the logarithmic form analytically only in the term of the Lambert w-function. The purpose of this study is to find an accurate and computationally efficient solution based on the shifted Lambert w-function also known as the Wright ω-function. The Wright ω-function is more suitable because it overcomes the problem with the overflow error by switching the fast growing term, y = w(ex), of the Lambert w-function to series expansions that further can be easily evaluated in computers without causing overflow run-time errors. Although the Colebrook equation transformed through the Lambert w-function is identical to the original expression in terms of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate explicit approximations of the Colebrook equation that contain only one or two logarithms are shown. The final result is an accurate explicit approximation of the Colebrook equation with a relative error of no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering use, and are both accurate and computationally efficient. (C) 2018 by the authors.

  • Název v anglickém jazyce

    Accurate and efficient explicit approximations of the colebrook flow friction equation based on the wright ω-function

  • Popis výsledku anglicky

    The Colebrook equation is a popular model for estimating friction loss coefficients in water and gas pipes. The model is implicit in the unknown flow friction factor, f. To date, the captured flow friction factor, f, can be extracted from the logarithmic form analytically only in the term of the Lambert w-function. The purpose of this study is to find an accurate and computationally efficient solution based on the shifted Lambert w-function also known as the Wright ω-function. The Wright ω-function is more suitable because it overcomes the problem with the overflow error by switching the fast growing term, y = w(ex), of the Lambert w-function to series expansions that further can be easily evaluated in computers without causing overflow run-time errors. Although the Colebrook equation transformed through the Lambert w-function is identical to the original expression in terms of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate explicit approximations of the Colebrook equation that contain only one or two logarithms are shown. The final result is an accurate explicit approximation of the Colebrook equation with a relative error of no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering use, and are both accurate and computationally efficient. (C) 2018 by the authors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000459734200034

  • EID výsledku v databázi Scopus

    2-s2.0-85059448011