Accurate and efficient explicit approximations of the colebrook flow friction equation based on the wright ω-function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10240873" target="_blank" >RIV/61989100:27740/19:10240873 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/7/1/34" target="_blank" >https://www.mdpi.com/2227-7390/7/1/34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math7010034" target="_blank" >10.3390/math7010034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accurate and efficient explicit approximations of the colebrook flow friction equation based on the wright ω-function
Popis výsledku v původním jazyce
The Colebrook equation is a popular model for estimating friction loss coefficients in water and gas pipes. The model is implicit in the unknown flow friction factor, f. To date, the captured flow friction factor, f, can be extracted from the logarithmic form analytically only in the term of the Lambert w-function. The purpose of this study is to find an accurate and computationally efficient solution based on the shifted Lambert w-function also known as the Wright ω-function. The Wright ω-function is more suitable because it overcomes the problem with the overflow error by switching the fast growing term, y = w(ex), of the Lambert w-function to series expansions that further can be easily evaluated in computers without causing overflow run-time errors. Although the Colebrook equation transformed through the Lambert w-function is identical to the original expression in terms of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate explicit approximations of the Colebrook equation that contain only one or two logarithms are shown. The final result is an accurate explicit approximation of the Colebrook equation with a relative error of no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering use, and are both accurate and computationally efficient. (C) 2018 by the authors.
Název v anglickém jazyce
Accurate and efficient explicit approximations of the colebrook flow friction equation based on the wright ω-function
Popis výsledku anglicky
The Colebrook equation is a popular model for estimating friction loss coefficients in water and gas pipes. The model is implicit in the unknown flow friction factor, f. To date, the captured flow friction factor, f, can be extracted from the logarithmic form analytically only in the term of the Lambert w-function. The purpose of this study is to find an accurate and computationally efficient solution based on the shifted Lambert w-function also known as the Wright ω-function. The Wright ω-function is more suitable because it overcomes the problem with the overflow error by switching the fast growing term, y = w(ex), of the Lambert w-function to series expansions that further can be easily evaluated in computers without causing overflow run-time errors. Although the Colebrook equation transformed through the Lambert w-function is identical to the original expression in terms of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate explicit approximations of the Colebrook equation that contain only one or two logarithms are shown. The final result is an accurate explicit approximation of the Colebrook equation with a relative error of no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering use, and are both accurate and computationally efficient. (C) 2018 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000459734200034
EID výsledku v databázi Scopus
2-s2.0-85059448011