DGX-A100 Face to Face DGX-2-Performance, Power and Thermal Behavior Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247602" target="_blank" >RIV/61989100:27740/21:10247602 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/14/2/376" target="_blank" >https://www.mdpi.com/1996-1073/14/2/376</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en14020376" target="_blank" >10.3390/en14020376</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DGX-A100 Face to Face DGX-2-Performance, Power and Thermal Behavior Evaluation
Popis výsledku v původním jazyce
Nvidia is a leading producer of GPUs for high-performance computing and artificial intelligence, bringing top performance and energy-efficiency. We present performance, power consumption, and thermal behavior analysis of the new Nvidia DGX-A100 server equipped with eight A100 Ampere microarchitecture GPUs. The results are compared against the previous generation of the server, Nvidia DGX-2, based on Tesla V100 GPUs. We developed a synthetic benchmark to measure the raw performance of floating-point computing units including Tensor Cores. Furthermore, thermal stability was investigated. In addition, Dynamic Frequency and Voltage Scaling (DVFS) analysis was performed to determine the best energy-efficient configuration of the GPUs executing workloads of various arithmetical intensities. Under the energy-optimal configuration the A100 GPU reaches efficiency of 51 GFLOPS/W for double-precision workload and 91 GFLOPS/W for tensor core double precision workload, which makes the A100 the most energy-efficient server accelerator for scientific simulations in the market.
Název v anglickém jazyce
DGX-A100 Face to Face DGX-2-Performance, Power and Thermal Behavior Evaluation
Popis výsledku anglicky
Nvidia is a leading producer of GPUs for high-performance computing and artificial intelligence, bringing top performance and energy-efficiency. We present performance, power consumption, and thermal behavior analysis of the new Nvidia DGX-A100 server equipped with eight A100 Ampere microarchitecture GPUs. The results are compared against the previous generation of the server, Nvidia DGX-2, based on Tesla V100 GPUs. We developed a synthetic benchmark to measure the raw performance of floating-point computing units including Tensor Cores. Furthermore, thermal stability was investigated. In addition, Dynamic Frequency and Voltage Scaling (DVFS) analysis was performed to determine the best energy-efficient configuration of the GPUs executing workloads of various arithmetical intensities. Under the energy-optimal configuration the A100 GPU reaches efficiency of 51 GFLOPS/W for double-precision workload and 91 GFLOPS/W for tensor core double precision workload, which makes the A100 the most energy-efficient server accelerator for scientific simulations in the market.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energies
ISSN
1996-1073
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000611196800001
EID výsledku v databázi Scopus
2-s2.0-85107118476