Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247608" target="_blank" >RIV/61989100:27740/21:10247608 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/21:10247608

  • Výsledek na webu

    <a href="https://www.degruyter.com/document/doi/10.1515/jnma-2020-0048/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/jnma-2020-0048/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/jnma-2020-0048" target="_blank" >10.1515/jnma-2020-0048</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems

  • Popis výsledku v původním jazyce

    Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of &quot;floating&quot;clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m x m x m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems. (C) 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.

  • Název v anglickém jazyce

    Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems

  • Popis výsledku anglicky

    Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of &quot;floating&quot;clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m x m x m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems. (C) 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Numerical Mathematics

  • ISSN

    1570-2820

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    18

  • Strana od-do

    289-306

  • Kód UT WoS článku

    000730400000002

  • EID výsledku v databázi Scopus

    2-s2.0-85099927350