Self-organizing migrating algorithm using covariance matrix adaptation evolution strategy for dynamic constrained optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247739" target="_blank" >RIV/61989100:27740/21:10247739 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/21:10247739
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210650221000973" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650221000973</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2021.100936" target="_blank" >10.1016/j.swevo.2021.100936</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-organizing migrating algorithm using covariance matrix adaptation evolution strategy for dynamic constrained optimization
Popis výsledku v původním jazyce
The dynamic constrained optimization problems can be a challenge for the optimization algorithms. They must tackle global optimum detection, as well as the change of the environment. Recently, a novel test suite for dynamic constrained optimization was introduced. Furthermore, three well-performed evolutionary algorithms were compared based on it. The experimental results show that each algorithm performed best for a different type of optimization problem. The objective of our work was to develop an algorithm reflecting requirements arising from the novel test suite and regarding the results provided by the tested algorithms. In this work, we present a novel evolutionary algorithm for dynamic constrained optimization. The algorithm hybridizes the self-organizing migrating algorithm and the covariance matrix adaptation evolution strategy with constraints handling approach. To avoid premature convergence, the best solutions representing feasible regions do not affect the rest of the population. Two clustering methods, exclusion radius, and quantum particles are used to preserve population diversity. The performance is evaluated on the recently published test suite and compared to the three state-of-the-art algorithms. The presented algorithm outperformed these algorithms in most test cases, which indicates the efficiency of the utilized mechanisms. (C) 2021 The Author(s)
Název v anglickém jazyce
Self-organizing migrating algorithm using covariance matrix adaptation evolution strategy for dynamic constrained optimization
Popis výsledku anglicky
The dynamic constrained optimization problems can be a challenge for the optimization algorithms. They must tackle global optimum detection, as well as the change of the environment. Recently, a novel test suite for dynamic constrained optimization was introduced. Furthermore, three well-performed evolutionary algorithms were compared based on it. The experimental results show that each algorithm performed best for a different type of optimization problem. The objective of our work was to develop an algorithm reflecting requirements arising from the novel test suite and regarding the results provided by the tested algorithms. In this work, we present a novel evolutionary algorithm for dynamic constrained optimization. The algorithm hybridizes the self-organizing migrating algorithm and the covariance matrix adaptation evolution strategy with constraints handling approach. To avoid premature convergence, the best solutions representing feasible regions do not affect the rest of the population. Two clustering methods, exclusion radius, and quantum particles are used to preserve population diversity. The performance is evaluated on the recently published test suite and compared to the three state-of-the-art algorithms. The presented algorithm outperformed these algorithms in most test cases, which indicates the efficiency of the utilized mechanisms. (C) 2021 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
2210-6510
Svazek periodika
65
Číslo periodika v rámci svazku
65
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
nestrankovano
Kód UT WoS článku
000680430000017
EID výsledku v databázi Scopus
2-s2.0-85108854822