EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10248959" target="_blank" >RIV/61989100:27740/21:10248959 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9473940" target="_blank" >https://ieeexplore.ieee.org/document/9473940</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/DATE51398.2021.9473940" target="_blank" >10.23919/DATE51398.2021.9473940</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms
Popis výsledku v původním jazyce
High-Performance Big Data Analytics (HPDA) applications are characterized by huge volumes of distributed and heterogeneous data that require efficient computation for knowledge extraction and decision making. Designers are moving towards a tight integration of computing systems combining HPC, Cloud, and IoT solutions with artificial intelligence (AI). Matching the application and data requirements with the characteristics of the underlying hardware is a key element to improve the predictions thanks to high performance and better use of resources. We present EVEREST, a novel H2020 project started on October 1, 2020, that aims at developing a holistic environment for the co-design of HPDA applications on heterogeneous, distributed, and secure platforms. EVEREST focuses on programmability issues through a data-driven design approach, the use of hardware accelerated AI, and an efficient runtime monitoring with virtualization support. In the different stages, EVEREST combines state-of-the-art programming models, emerging communication standards, and novel domain-specific extensions. We describe the EVEREST approach and the use cases that drive our research.
Název v anglickém jazyce
EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms
Popis výsledku anglicky
High-Performance Big Data Analytics (HPDA) applications are characterized by huge volumes of distributed and heterogeneous data that require efficient computation for knowledge extraction and decision making. Designers are moving towards a tight integration of computing systems combining HPC, Cloud, and IoT solutions with artificial intelligence (AI). Matching the application and data requirements with the characteristics of the underlying hardware is a key element to improve the predictions thanks to high performance and better use of resources. We present EVEREST, a novel H2020 project started on October 1, 2020, that aims at developing a holistic environment for the co-design of HPDA applications on heterogeneous, distributed, and secure platforms. EVEREST focuses on programmability issues through a data-driven design approach, the use of hardware accelerated AI, and an efficient runtime monitoring with virtualization support. In the different stages, EVEREST combines state-of-the-art programming models, emerging communication standards, and novel domain-specific extensions. We describe the EVEREST approach and the use cases that drive our research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2021 Design, Automation & Test in Europe (DATE 2021) : 01-05 February 2021, Virtual Conference
ISBN
978-1-72816-336-9
ISSN
1530-1591
e-ISSN
1558-1101
Počet stran výsledku
6
Strana od-do
1320-1325
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Grenoble
Datum konání akce
1. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—