Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

rsdtlib: Remote sensing with deep-temporal data library

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10252101" target="_blank" >RIV/61989100:27740/23:10252101 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.softx.2023.101369" target="_blank" >https://doi.org/10.1016/j.softx.2023.101369</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.softx.2023.101369" target="_blank" >10.1016/j.softx.2023.101369</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    rsdtlib: Remote sensing with deep-temporal data library

  • Popis výsledku v původním jazyce

    For over a decade, satellite based remote sensing data have been intensively used for Deep Learning (DL) to help to identify Land Cover (LC) and Land Use (LU), and to detect urban and vegetation changes. Usually, these tasks are carried out with few samples or short and low-dimensional time series. In a recent study demonstrating urban change detection and monitoring, a windowed high-dimensional large time series (deep-temporal) was leveraged that not only considered a large amount of observations but also combined multiple modes for a higher temporal resolution. The software used in this approach for pre-processing, called rsdtlib, is described in the underlying work. It is made available to help others in the field of remote sensing to use this approach for Deep and Machine Learning (ML) solutions. The software is scalable to support a wide range of demands, including providing single observation samples, observation pairs, multiple modes, and the construction of windowed deep-temporal time series. Its output data is in a DL/ML training ready format and the software solution integrates well with existing remote sensing tools and services. The rsdtlib software is hosted on Github as an open source project to invite other researchers and practitioners in the remote sensing domain to utilize it.

  • Název v anglickém jazyce

    rsdtlib: Remote sensing with deep-temporal data library

  • Popis výsledku anglicky

    For over a decade, satellite based remote sensing data have been intensively used for Deep Learning (DL) to help to identify Land Cover (LC) and Land Use (LU), and to detect urban and vegetation changes. Usually, these tasks are carried out with few samples or short and low-dimensional time series. In a recent study demonstrating urban change detection and monitoring, a windowed high-dimensional large time series (deep-temporal) was leveraged that not only considered a large amount of observations but also combined multiple modes for a higher temporal resolution. The software used in this approach for pre-processing, called rsdtlib, is described in the underlying work. It is made available to help others in the field of remote sensing to use this approach for Deep and Machine Learning (ML) solutions. The software is scalable to support a wide range of demands, including providing single observation samples, observation pairs, multiple modes, and the construction of windowed deep-temporal time series. Its output data is in a DL/ML training ready format and the software solution integrates well with existing remote sensing tools and services. The rsdtlib software is hosted on Github as an open source project to invite other researchers and practitioners in the remote sensing domain to utilize it.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SoftwareX

  • ISSN

    2352-7110

  • e-ISSN

    2352-7110

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    6

  • Strana od-do

  • Kód UT WoS článku

    000960463100001

  • EID výsledku v databázi Scopus

    2-s2.0-85150427470