Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A practically feasible transfer learning method for deep-temporal urban change monitoring

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10252827" target="_blank" >RIV/61989100:27740/23:10252827 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1080/01431161.2023.2243021" target="_blank" >https://doi.org/10.1080/01431161.2023.2243021</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/01431161.2023.2243021" target="_blank" >10.1080/01431161.2023.2243021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A practically feasible transfer learning method for deep-temporal urban change monitoring

  • Popis výsledku v původním jazyce

    Neural networks have shown their potential to monitor urban changes with deep-temporal remote sensing data, which simultaneously considers a large number of observations within a given window. However, training these networks with supervision is a challenge due to the low availability of third-party sources with sufficient spatio-temporal resolution to label each window individually. To remedy this problem, we developed a novel approach utilizing transfer learning (TL) on a set of deep-temporal windows. We demonstrate that labelling of multiple windows simultaneously can be practically viable, even with a low amount of high spatial resolution third-party data. The overall process provides a trade-off between labour resources and the ability to train a network on existing systems, despite its intensive memory requirements. As a demonstration, an existing previously trained (pre-trained) network was used to transfer knowledge to a new target location. We demonstrate our method with combined Sentinel 1 and 2 observations for the area of Liège (Belgium) for the time period spanning 2017-2020. This is underpinned by our use of common metrics in machine learning and remote sensing, and in our discussion of selected examples. Three independent transfers of the same pre-trained model and their combination were carried out, all of which showed an improvement in terms of these metrics.

  • Název v anglickém jazyce

    A practically feasible transfer learning method for deep-temporal urban change monitoring

  • Popis výsledku anglicky

    Neural networks have shown their potential to monitor urban changes with deep-temporal remote sensing data, which simultaneously considers a large number of observations within a given window. However, training these networks with supervision is a challenge due to the low availability of third-party sources with sufficient spatio-temporal resolution to label each window individually. To remedy this problem, we developed a novel approach utilizing transfer learning (TL) on a set of deep-temporal windows. We demonstrate that labelling of multiple windows simultaneously can be practically viable, even with a low amount of high spatial resolution third-party data. The overall process provides a trade-off between labour resources and the ability to train a network on existing systems, despite its intensive memory requirements. As a demonstration, an existing previously trained (pre-trained) network was used to transfer knowledge to a new target location. We demonstrate our method with combined Sentinel 1 and 2 observations for the area of Liège (Belgium) for the time period spanning 2017-2020. This is underpinned by our use of common metrics in machine learning and remote sensing, and in our discussion of selected examples. Three independent transfers of the same pre-trained model and their combination were carried out, all of which showed an improvement in terms of these metrics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Remote Sensing

  • ISSN

    0143-1161

  • e-ISSN

    1366-5901

  • Svazek periodika

    44

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    35

  • Strana od-do

    5172-5206

  • Kód UT WoS článku

    001054398700001

  • EID výsledku v databázi Scopus

    2-s2.0-85169299359