Graphene-Supported Atom-Sized Magnets for Data Storage: What Can We Learn from First-Principles Calculations?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10253163" target="_blank" >RIV/61989100:27740/23:10253163 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/23:73621814 RIV/61989592:15640/23:73621814
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10228258" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10228258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/INTERMAGShortPapers58606.2023.10228258" target="_blank" >10.1109/INTERMAGShortPapers58606.2023.10228258</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graphene-Supported Atom-Sized Magnets for Data Storage: What Can We Learn from First-Principles Calculations?
Popis výsledku v původním jazyce
Doping the graphene lattice with transition metal (TM) atoms has been identified as an effective strategy for obtaining high magnetic anisotropy energy (MAE), preventing thermally induced reorientation of magnetic moments between the easy and hard magnetization axes. Lattice imperfections such as atomic vacancies can anchor TM atoms or their clusters, preventing them from diffusing and agglomerating on the surface, ultimately allowing high MAEs of 170 meV for an OsPd dimer bound to a single nitrogen-decorated vacancy (NSV) in the graphene lattice. Importantly, the lighter TM dimers, FeMn bound to two separate double-vacancy (DV) defects, can also exhibit a significant MAE of 120 meV when interacting with each other through the graphene lattice. The presence of Mn impurities associated with DV defects in the graphene lattice has been confirmed experimentally and can form anchors for the formation of FeMn dimers. For practical applications of graphene-supported magnetic dimers, the carbon sheet must be deposited on a solid support. A properly selected substrate can, to a large extent, allow for the preservation of a large MAE of dimers.
Název v anglickém jazyce
Graphene-Supported Atom-Sized Magnets for Data Storage: What Can We Learn from First-Principles Calculations?
Popis výsledku anglicky
Doping the graphene lattice with transition metal (TM) atoms has been identified as an effective strategy for obtaining high magnetic anisotropy energy (MAE), preventing thermally induced reorientation of magnetic moments between the easy and hard magnetization axes. Lattice imperfections such as atomic vacancies can anchor TM atoms or their clusters, preventing them from diffusing and agglomerating on the surface, ultimately allowing high MAEs of 170 meV for an OsPd dimer bound to a single nitrogen-decorated vacancy (NSV) in the graphene lattice. Importantly, the lighter TM dimers, FeMn bound to two separate double-vacancy (DV) defects, can also exhibit a significant MAE of 120 meV when interacting with each other through the graphene lattice. The presence of Mn impurities associated with DV defects in the graphene lattice has been confirmed experimentally and can form anchors for the formation of FeMn dimers. For practical applications of graphene-supported magnetic dimers, the carbon sheet must be deposited on a solid support. A properly selected substrate can, to a large extent, allow for the preservation of a large MAE of dimers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2023 : proceedings
ISBN
979-8-3503-3836-2
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Sendai
Datum konání akce
15. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—