OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73615829" target="_blank" >RIV/61989592:15310/22:73615829 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/22:73615829
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6528/ac5447/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6528/ac5447/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6528/ac5447" target="_blank" >10.1088/1361-6528/ac5447</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage
Popis výsledku v původním jazyce
The growing gap between the volume of digital data being created and the extent of available storage capacities stimulates intensive research into surface-supported, well-ordered array of atom-sized magnets that represents the ultimate limit of magnetic data storage. Anchoring transition-metal heterodimers in vacancy defects in the graphene lattice has been identified as a vivid strategy to achieve large magnetic anisotropy energy (MAE) up to 80 meV with an easy axis aligned along the dimer bond. In this paper we have made a significant leap forward finding out MAE of 119 meV for an OsPt dimer and 170 meV for an OsPd dimer bound to a single nitrogen-decorated vacancy defect. The system with the highest MAE and with the theoretical storage density of similar to 490 Tb center dot inch(-2) pushes the current limit of theoretical blocking temperature in graphene-supported transition-metal dimers from similar to 20 to similar to 44 K assuming the relaxation time of 10 years. The mechanism of the enhanced MAE is discussed.
Název v anglickém jazyce
OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage
Popis výsledku anglicky
The growing gap between the volume of digital data being created and the extent of available storage capacities stimulates intensive research into surface-supported, well-ordered array of atom-sized magnets that represents the ultimate limit of magnetic data storage. Anchoring transition-metal heterodimers in vacancy defects in the graphene lattice has been identified as a vivid strategy to achieve large magnetic anisotropy energy (MAE) up to 80 meV with an easy axis aligned along the dimer bond. In this paper we have made a significant leap forward finding out MAE of 119 meV for an OsPt dimer and 170 meV for an OsPd dimer bound to a single nitrogen-decorated vacancy defect. The system with the highest MAE and with the theoretical storage density of similar to 490 Tb center dot inch(-2) pushes the current limit of theoretical blocking temperature in graphene-supported transition-metal dimers from similar to 20 to similar to 44 K assuming the relaxation time of 10 years. The mechanism of the enhanced MAE is discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000754" target="_blank" >EF16_019/0000754: Nanotechnologie pro budoucnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NANOTECHNOLOGY
ISSN
0957-4484
e-ISSN
1361-6528
Svazek periodika
33
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
"215001-1"-"215001-7"
Kód UT WoS článku
000762046000001
EID výsledku v databázi Scopus
2-s2.0-85125550993