Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Laser-Printed Plasmonic Metasurface Supporting Bound States in the Continuum Enhances and Shapes Infrared Spontaneous Emission of Coupled HgTe Quantum Dots

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10254122" target="_blank" >RIV/61989100:27740/23:10254122 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202307660" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adfm.202307660</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.202307660" target="_blank" >10.1002/adfm.202307660</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Laser-Printed Plasmonic Metasurface Supporting Bound States in the Continuum Enhances and Shapes Infrared Spontaneous Emission of Coupled HgTe Quantum Dots

  • Popis výsledku v původním jazyce

    In order to advance the development of quantum emitter-based devices, it is essential to enhance light-matter interactions through coupling between semiconductor quantum dots with high quality factor resonators. Here, efficient tuning of the emission properties of HgTe quantum dots in the infrared spectral region is demonstrated by coupling them to a plasmonic metasurface that supports bound states in the continuum. The plasmonic metasurface, composed of an array of gold nanobumps, is fabricated using single-step direct laser printing, opening up new opportunities for creating exclusive 3D plasmonic nanostructures and advanced photonic devices in the infrared region. A 12-fold enhancement of the photoluminescence in the 900-1700 nm range is observed under optimal coupling conditions. By tuning the geometry of the plasmonic arrays, controllable shaping of the emission spectra is achieved, selectively enhancing specific wavelength ranges across the emission spectrum. The observed enhancement and shaping of the emission are attributed to the Purcell effect, as corroborated by systematic measurements of radiative lifetimes and optical simulations based on the numerical solution of Maxwell&apos;s equations. Moreover, coupling of the HgTe photoluminescence to high quality factor modes of the metasurface improves emission directivity, concentrating output within an approximate to 20 degrees angle.

  • Název v anglickém jazyce

    Laser-Printed Plasmonic Metasurface Supporting Bound States in the Continuum Enhances and Shapes Infrared Spontaneous Emission of Coupled HgTe Quantum Dots

  • Popis výsledku anglicky

    In order to advance the development of quantum emitter-based devices, it is essential to enhance light-matter interactions through coupling between semiconductor quantum dots with high quality factor resonators. Here, efficient tuning of the emission properties of HgTe quantum dots in the infrared spectral region is demonstrated by coupling them to a plasmonic metasurface that supports bound states in the continuum. The plasmonic metasurface, composed of an array of gold nanobumps, is fabricated using single-step direct laser printing, opening up new opportunities for creating exclusive 3D plasmonic nanostructures and advanced photonic devices in the infrared region. A 12-fold enhancement of the photoluminescence in the 900-1700 nm range is observed under optimal coupling conditions. By tuning the geometry of the plasmonic arrays, controllable shaping of the emission spectra is achieved, selectively enhancing specific wavelength ranges across the emission spectrum. The observed enhancement and shaping of the emission are attributed to the Purcell effect, as corroborated by systematic measurements of radiative lifetimes and optical simulations based on the numerical solution of Maxwell&apos;s equations. Moreover, coupling of the HgTe photoluminescence to high quality factor modes of the metasurface improves emission directivity, concentrating output within an approximate to 20 degrees angle.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Functional Materials

  • ISSN

    1616-301X

  • e-ISSN

    1616-3028

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    44

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    001138528300066

  • EID výsledku v databázi Scopus

    2-s2.0-85168914294