Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254282" target="_blank" >RIV/61989100:27740/24:10254282 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/24:10254282 RIV/61989100:27730/24:10254282
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210650224000208" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650224000208</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2024.101487" target="_blank" >10.1016/j.swevo.2024.101487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm
Popis výsledku v původním jazyce
This paper presents a new algorithm for optimizing parameters in swarm algorithm using reinforcement learning. The algorithm, called iSOMA-RL, is based on the iSOMA algorithm, a population-based optimization algorithm that mimics the competition-cooperation behavior of creatures to find the optimal solution. By using reinforcement learning, iSOMA-RL can dynamically and continuously optimize parameters, which can play a crucial role in determining the performance of the algorithm but are often difficult to determine. The reinforcement learning technique used is the state-of-the-art Proximal Policy Optimization (PPO), which has been successful in many areas. The algorithm was compared to the original iSOMA algorithm and other algorithms from the SOMA family, showing better performance with only constant increase in computational complexity depending on number of function evaluations. Also we examine different sets of parameters to optimize and different reward functions. We also did comparison to widely used and state-of-the-art algorithms to illustrate improvement in performance over the original iSOMA algorithm. (C) 2024 The Authors
Název v anglickém jazyce
Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm
Popis výsledku anglicky
This paper presents a new algorithm for optimizing parameters in swarm algorithm using reinforcement learning. The algorithm, called iSOMA-RL, is based on the iSOMA algorithm, a population-based optimization algorithm that mimics the competition-cooperation behavior of creatures to find the optimal solution. By using reinforcement learning, iSOMA-RL can dynamically and continuously optimize parameters, which can play a crucial role in determining the performance of the algorithm but are often difficult to determine. The reinforcement learning technique used is the state-of-the-art Proximal Policy Optimization (PPO), which has been successful in many areas. The algorithm was compared to the original iSOMA algorithm and other algorithms from the SOMA family, showing better performance with only constant increase in computational complexity depending on number of function evaluations. Also we examine different sets of parameters to optimize and different reward functions. We also did comparison to widely used and state-of-the-art algorithms to illustrate improvement in performance over the original iSOMA algorithm. (C) 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
—
Svazek periodika
85
Číslo periodika v rámci svazku
101487
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
nestránkováno
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85183455296