Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Global dynamics and computational modeling approach for analyzing and controlling of alcohol addiction using a novel fractional and fractal-fractional modeling approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254506" target="_blank" >RIV/61989100:27740/24:10254506 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1038/s41598-024-54578-9" target="_blank" >https://doi.org/10.1038/s41598-024-54578-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-54578-9" target="_blank" >10.1038/s41598-024-54578-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Global dynamics and computational modeling approach for analyzing and controlling of alcohol addiction using a novel fractional and fractal-fractional modeling approach

  • Popis výsledku v původním jazyce

    In recent years, alcohol addiction has become a major public health concern and a global threat due to its potential negative health and social impacts. Beyond the health consequences, the detrimental consumption of alcohol results in substantial social and economic burdens on both individuals and society as a whole. Therefore, a proper understanding and effective control of the spread of alcohol addictive behavior has become an appealing global issue to be solved. In this study, we develop a new mathematical model of alcohol addiction with treatment class. We analyze the dynamics of the alcohol addiction model for the first time using advanced operators known as fractal-fractional operators, which incorporate two distinct fractal and fractional orders with the well-known Caputo derivative based on power law kernels. The existence and uniqueness of the newly developed fractal-fractional alcohol addiction model are shown using the Picard-Lindelöf and fixed point theories. Initially, a comprehensive qualitative analysis of the alcohol addiction fractional model is presented. The possible equilibria of the model and the threshold parameter called the reproduction number are evaluated theoretically and numerically. The boundedness and biologically feasible region for the model are derived. To assess the stability of the proposed model, the Ulam-Hyers coupled with the Ulam-Hyers-Rassias stability criteria are employed. Moreover, utilizing effecting numerical schemes, the models are solved numerically and a detailed simulation and discussion are presented. The model global dynamics are shown graphically for various values of fractional and fractal dimensions. The present study aims to provide valuable insights for the understanding the dynamics and control of alcohol addiction within a community. (C) The Author(s) 2024.

  • Název v anglickém jazyce

    Global dynamics and computational modeling approach for analyzing and controlling of alcohol addiction using a novel fractional and fractal-fractional modeling approach

  • Popis výsledku anglicky

    In recent years, alcohol addiction has become a major public health concern and a global threat due to its potential negative health and social impacts. Beyond the health consequences, the detrimental consumption of alcohol results in substantial social and economic burdens on both individuals and society as a whole. Therefore, a proper understanding and effective control of the spread of alcohol addictive behavior has become an appealing global issue to be solved. In this study, we develop a new mathematical model of alcohol addiction with treatment class. We analyze the dynamics of the alcohol addiction model for the first time using advanced operators known as fractal-fractional operators, which incorporate two distinct fractal and fractional orders with the well-known Caputo derivative based on power law kernels. The existence and uniqueness of the newly developed fractal-fractional alcohol addiction model are shown using the Picard-Lindelöf and fixed point theories. Initially, a comprehensive qualitative analysis of the alcohol addiction fractional model is presented. The possible equilibria of the model and the threshold parameter called the reproduction number are evaluated theoretically and numerically. The boundedness and biologically feasible region for the model are derived. To assess the stability of the proposed model, the Ulam-Hyers coupled with the Ulam-Hyers-Rassias stability criteria are employed. Moreover, utilizing effecting numerical schemes, the models are solved numerically and a detailed simulation and discussion are presented. The model global dynamics are shown graphically for various values of fractional and fractal dimensions. The present study aims to provide valuable insights for the understanding the dynamics and control of alcohol addiction within a community. (C) The Author(s) 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    29

  • Strana od-do

  • Kód UT WoS článku

    001179043600066

  • EID výsledku v databázi Scopus

    2-s2.0-85186432283