Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254687" target="_blank" >RIV/61989100:27740/24:10254687 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-56944-z" target="_blank" >https://www.nature.com/articles/s41598-024-56944-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-56944-z" target="_blank" >10.1038/s41598-024-56944-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis
Popis výsledku v původním jazyce
The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system's solutions, we investigate stochasticity's influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.
Název v anglickém jazyce
Numerical simulation of a fractional stochastic delay differential equations using spectral scheme: a comprehensive stability analysis
Popis výsledku anglicky
The fractional stochastic delay differential equation (FSDDE) is a powerful mathematical tool for modeling complex systems that exhibit both fractional order dynamics and stochasticity with time delays. The purpose of this study is to explore the stability analysis of a system of FSDDEs. Our study emphasizes the interaction between fractional calculus, stochasticity, and time delays in understanding the stability of such systems. Analyzing the moments of the system's solutions, we investigate stochasticity's influence on FSDDS. The article provides practical insight into solving FSDDS efficiently using various numerical techniques. Additionally, this research focuses both on asymptotic as well as Lyapunov stability of FSDDS. The local stability conditions are clearly presented and also the effects of a fractional orders with delay on the stability properties are examine. Through a comprehensive test of a stability criteria, practical examples and numerical simulations we demonstrate the complexity and challenges concern with the analyzing FSDDEs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001190086900048
EID výsledku v databázi Scopus
2-s2.0-85188430160