Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254764" target="_blank" >RIV/61989100:27740/24:10254764 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/24:73625172
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/smll.202310402" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/smll.202310402</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/smll.202310402" target="_blank" >10.1002/smll.202310402</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning
Popis výsledku v původním jazyce
Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures. The dataset on synthetic parameters and optical properties of red and near-infrared emitting carbon dots are collected, processed, and analyzed. A model for prediction of spectral characteristics of these carbon dots is established as open-source code and experimentally validated in three different laboratories, and it can be accessed by researchers for the prediction of carbon dots properties. image
Název v anglickém jazyce
Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning
Popis výsledku anglicky
Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures. The dataset on synthetic parameters and optical properties of red and near-infrared emitting carbon dots are collected, processed, and analyzed. A model for prediction of spectral characteristics of these carbon dots is established as open-source code and experimentally validated in three different laboratories, and it can be accessed by researchers for the prediction of carbon dots properties. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Small
ISSN
1613-6810
e-ISSN
1613-6829
Svazek periodika
20
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
001159925500001
EID výsledku v databázi Scopus
2-s2.0-85184488822