Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254764" target="_blank" >RIV/61989100:27740/24:10254764 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15640/24:73625172

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/smll.202310402" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/smll.202310402</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/smll.202310402" target="_blank" >10.1002/smll.202310402</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning

  • Popis výsledku v původním jazyce

    Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures. The dataset on synthetic parameters and optical properties of red and near-infrared emitting carbon dots are collected, processed, and analyzed. A model for prediction of spectral characteristics of these carbon dots is established as open-source code and experimentally validated in three different laboratories, and it can be accessed by researchers for the prediction of carbon dots properties. image

  • Název v anglickém jazyce

    Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning

  • Popis výsledku anglicky

    Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures. The dataset on synthetic parameters and optical properties of red and near-infrared emitting carbon dots are collected, processed, and analyzed. A model for prediction of spectral characteristics of these carbon dots is established as open-source code and experimentally validated in three different laboratories, and it can be accessed by researchers for the prediction of carbon dots properties. image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Small

  • ISSN

    1613-6810

  • e-ISSN

    1613-6829

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    29

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    001159925500001

  • EID výsledku v databázi Scopus

    2-s2.0-85184488822