HyperQueue: Efficient and ergonomic task graphs on HPC clusters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255113" target="_blank" >RIV/61989100:27740/24:10255113 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.softxjournal.com/article/S2352-7110(24)00185-7/fulltext" target="_blank" >https://www.softxjournal.com/article/S2352-7110(24)00185-7/fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.softx.2024.101814" target="_blank" >10.1016/j.softx.2024.101814</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HyperQueue: Efficient and ergonomic task graphs on HPC clusters
Popis výsledku v původním jazyce
Task graphs are a popular method for defining complex scientific simulations and experiments that run on distributed and HPC (High-performance computing) clusters, because they allow their authors to focus on the problem domain, instead of low-level communication between nodes, and also enable quick prototyping. However, executing task graphs on HPC clusters can be problematic in the presence of allocation managers like PBS or Slurm, which are not designed for executing a large number of potentially short-lived tasks with dependencies. To make task graph execution on HPC clusters more efficient and ergonomic, we have created HYPERQUEUE, an open-source task graph execution runtime tailored for HPC use-cases. It enables the execution of large task graphs on top of an allocation manager by aggregating tasks into a smaller amount of PBS/Slurm allocations and dynamically load balances tasks amongst all available nodes. It can also automatically submit allocations on behalf of the user, it supports arbitrary task resource requirements and heterogeneous HPC clusters, it is trivial to deploy and does not require elevated privileges.
Název v anglickém jazyce
HyperQueue: Efficient and ergonomic task graphs on HPC clusters
Popis výsledku anglicky
Task graphs are a popular method for defining complex scientific simulations and experiments that run on distributed and HPC (High-performance computing) clusters, because they allow their authors to focus on the problem domain, instead of low-level communication between nodes, and also enable quick prototyping. However, executing task graphs on HPC clusters can be problematic in the presence of allocation managers like PBS or Slurm, which are not designed for executing a large number of potentially short-lived tasks with dependencies. To make task graph execution on HPC clusters more efficient and ergonomic, we have created HYPERQUEUE, an open-source task graph execution runtime tailored for HPC use-cases. It enables the execution of large task graphs on top of an allocation manager by aggregating tasks into a smaller amount of PBS/Slurm allocations and dynamically load balances tasks amongst all available nodes. It can also automatically submit allocations on behalf of the user, it supports arbitrary task resource requirements and heterogeneous HPC clusters, it is trivial to deploy and does not require elevated privileges.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SoftwareX
ISSN
2352-7110
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
001267389800001
EID výsledku v databázi Scopus
2-s2.0-85198121697