A comparative analysis of fractional model of second grade fluid subject to exponential heating: application of novel hybrid fractional derivative operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255130" target="_blank" >RIV/61989100:27740/24:10255130 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/25765299.2023.2289237" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/25765299.2023.2289237</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/25765299.2023.2289237" target="_blank" >10.1080/25765299.2023.2289237</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative analysis of fractional model of second grade fluid subject to exponential heating: application of novel hybrid fractional derivative operator
Popis výsledku v původním jazyce
In this article, a new approach to study the fractionalized second grade fluid flow is described by the different fractional derivative operators near an exponentially accelerated vertical plate together with exponentially variable velocity, energy and mass diffusion through a porous media is critically examined. The phenomenon has been expressed in terms of partial differential equations, then transformed the governing equations in non-dimentional form. For the sake of better rheology of second grade fluid, developed a fractional model by applying the new definition of Constant Proportional-Caputo hybrid derivative (CPC), Atangana Baleanu in Caputo sense (ABC) and Caputo Fabrizio (CF) fractional derivative operators that describe the generalized memory effects. For seeking exact solutions in terms of Mittag-Leffler and G-functions for velocity, temperature and concentration equations, Laplace integral transformation technique is applied. For physical significance of various system parameters on fluid velocity, concentration and temperature distributions are demonstrated through various graphs by using graphical software. Furthermore, for being validated the acquired solutions, accomplished a comparative analysis with some published work. It is also analyzed that for exponential heating and non-uniform velocity conditions, the CPC fractional operator is the finest fractional model to describe the memory effect of velocity, energy and concentration profile. Moreover, the graphical representations of the analytical solutions illustrated the main results of the present work. Also, in the literature, it is observed that to derived analytical results from fractional fluid models developed by the various fractional operators, is difficult and this article contributing to answer the open problem of obtaining analytical solutions the fractionalized fluid models. (C) 2023 The Author(s).
Název v anglickém jazyce
A comparative analysis of fractional model of second grade fluid subject to exponential heating: application of novel hybrid fractional derivative operator
Popis výsledku anglicky
In this article, a new approach to study the fractionalized second grade fluid flow is described by the different fractional derivative operators near an exponentially accelerated vertical plate together with exponentially variable velocity, energy and mass diffusion through a porous media is critically examined. The phenomenon has been expressed in terms of partial differential equations, then transformed the governing equations in non-dimentional form. For the sake of better rheology of second grade fluid, developed a fractional model by applying the new definition of Constant Proportional-Caputo hybrid derivative (CPC), Atangana Baleanu in Caputo sense (ABC) and Caputo Fabrizio (CF) fractional derivative operators that describe the generalized memory effects. For seeking exact solutions in terms of Mittag-Leffler and G-functions for velocity, temperature and concentration equations, Laplace integral transformation technique is applied. For physical significance of various system parameters on fluid velocity, concentration and temperature distributions are demonstrated through various graphs by using graphical software. Furthermore, for being validated the acquired solutions, accomplished a comparative analysis with some published work. It is also analyzed that for exponential heating and non-uniform velocity conditions, the CPC fractional operator is the finest fractional model to describe the memory effect of velocity, energy and concentration profile. Moreover, the graphical representations of the analytical solutions illustrated the main results of the present work. Also, in the literature, it is observed that to derived analytical results from fractional fluid models developed by the various fractional operators, is difficult and this article contributing to answer the open problem of obtaining analytical solutions the fractionalized fluid models. (C) 2023 The Author(s).
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Arab Journal of Basic and Applied Sciences
ISSN
2576-5299
e-ISSN
2576-5299
Svazek periodika
31
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85196839121