Dynamics of Jeffrey fluid flow and heat transfer: A Prabhakar fractional operator approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255143" target="_blank" >RIV/61989100:27740/24:10255143 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666202724001514?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666202724001514?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijft.2024.100709" target="_blank" >10.1016/j.ijft.2024.100709</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics of Jeffrey fluid flow and heat transfer: A Prabhakar fractional operator approach
Popis výsledku v původním jazyce
The primary goal of current study is to formulate a novel mathematical model employing the Prabhakar fractional operator, aimed at examining the dynamic behaviour of Jeffrey fluid flow and heat transfer phenomena under ramped wall temperature conditions. Our investigation entails a meticulous investigation of magnetohydrodynamic (MHD) natural convective flow within Jeffrey fluids, where we derive precise analytical solutions utilizing the Prabhakar fractional derivative, characterized by a non-singular type kernel. Furthermore, our study integrates fundamental principles such as Fick's and Fourier's laws into the model, leveraging a multi-parameter Mittag-Leffler kernel associated with the fractional operator. We delve into the intricacies of fluid flow near an infinitely vertical plate, considering characteristics such as velocity u0. To address the complexities of the problem, we express it in context the of partial differential equations along side generalized boundary conditions, employing a set of appropriate variables to transform these equations into a dimensionless form. Utilizing Laplace transform, we analyse the equations of fractional system, presenting outcomes both in the form of series and through specialized functions. We systematically explore the influence of key parameters α, Pr, β, Gm, Sc, γ, Gr on fluid flow dynamics, unveiling significant insights. Our comparative analysis reveals the superior performance of the Prabhakar-like non-integer approach over existing operators, substantiated by graphical representations of the results. Additionally, we extend our investigation to various limiting cases, including Newtonian fluids and second-grade, in both fractionalized and classical forms, thus highlighting the versatility and applicability of our proposed model within fluid dynamics research. (C) 2024 The Author(s)
Název v anglickém jazyce
Dynamics of Jeffrey fluid flow and heat transfer: A Prabhakar fractional operator approach
Popis výsledku anglicky
The primary goal of current study is to formulate a novel mathematical model employing the Prabhakar fractional operator, aimed at examining the dynamic behaviour of Jeffrey fluid flow and heat transfer phenomena under ramped wall temperature conditions. Our investigation entails a meticulous investigation of magnetohydrodynamic (MHD) natural convective flow within Jeffrey fluids, where we derive precise analytical solutions utilizing the Prabhakar fractional derivative, characterized by a non-singular type kernel. Furthermore, our study integrates fundamental principles such as Fick's and Fourier's laws into the model, leveraging a multi-parameter Mittag-Leffler kernel associated with the fractional operator. We delve into the intricacies of fluid flow near an infinitely vertical plate, considering characteristics such as velocity u0. To address the complexities of the problem, we express it in context the of partial differential equations along side generalized boundary conditions, employing a set of appropriate variables to transform these equations into a dimensionless form. Utilizing Laplace transform, we analyse the equations of fractional system, presenting outcomes both in the form of series and through specialized functions. We systematically explore the influence of key parameters α, Pr, β, Gm, Sc, γ, Gr on fluid flow dynamics, unveiling significant insights. Our comparative analysis reveals the superior performance of the Prabhakar-like non-integer approach over existing operators, substantiated by graphical representations of the results. Additionally, we extend our investigation to various limiting cases, including Newtonian fluids and second-grade, in both fractionalized and classical forms, thus highlighting the versatility and applicability of our proposed model within fluid dynamics research. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Thermofluids
ISSN
2666-2027
e-ISSN
2666-2027
Svazek periodika
22
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194543719