Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermal and Flow Properties of Jeffrey Fluid Through Prabhakar Fractional Approach: Investigating Heat and Mass Transfer with Emphasis on Special Functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255156" target="_blank" >RIV/61989100:27740/24:10255156 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s40819-024-01747-z" target="_blank" >https://link.springer.com/article/10.1007/s40819-024-01747-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40819-024-01747-z" target="_blank" >10.1007/s40819-024-01747-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermal and Flow Properties of Jeffrey Fluid Through Prabhakar Fractional Approach: Investigating Heat and Mass Transfer with Emphasis on Special Functions

  • Popis výsledku v původním jazyce

    The core purpose of this work is the investigation, formulation and develop a mathematical model by dint of a new fractional modeling approach namely Prabhakar fractional operator to study the dynamics of Jeffrey fluid flow and heat transfer phenomena. Exact analysis of natural convective flow of the Jeffrey fluid to derive analytical solutions with the non-integer order derivative Prabhakar fractional operator with non-singular type kernel alongwith application of generalized laws namely Fick&apos;s and Fourier&apos;s are reported here. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fluid flow is elaborated near an infinitely vertical plate with characteristics velocity u0. The modeling of the considered problem is done in terms of the partial differential equations together with generalized boundary conditions. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform is operated on the fractional system of equations and results are presented in series form and also presented the solution in the form of special functions. The pertinent parameter&apos;s influence such as α, Pr, β, Gm, Sc, γ, Gr on the fluid flow is brought under consideration to reveal the interesting results. In comparison, we noticed the Prabhakar-like non integer approach shows better results than the existing operators in the literature, and graphs are drawn to show the results. Also, obtained the results in a limiting sense such as second grade fluid, Newtonian fluid in fractionalized form as well as Jeffrey and viscous fluid models for classical form from Prabhakar-like non integer Jeffrey fluid model. (C) The Author(s), under exclusive licence to Springer Nature India Private Limited 2024.

  • Název v anglickém jazyce

    Thermal and Flow Properties of Jeffrey Fluid Through Prabhakar Fractional Approach: Investigating Heat and Mass Transfer with Emphasis on Special Functions

  • Popis výsledku anglicky

    The core purpose of this work is the investigation, formulation and develop a mathematical model by dint of a new fractional modeling approach namely Prabhakar fractional operator to study the dynamics of Jeffrey fluid flow and heat transfer phenomena. Exact analysis of natural convective flow of the Jeffrey fluid to derive analytical solutions with the non-integer order derivative Prabhakar fractional operator with non-singular type kernel alongwith application of generalized laws namely Fick&apos;s and Fourier&apos;s are reported here. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fluid flow is elaborated near an infinitely vertical plate with characteristics velocity u0. The modeling of the considered problem is done in terms of the partial differential equations together with generalized boundary conditions. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform is operated on the fractional system of equations and results are presented in series form and also presented the solution in the form of special functions. The pertinent parameter&apos;s influence such as α, Pr, β, Gm, Sc, γ, Gr on the fluid flow is brought under consideration to reveal the interesting results. In comparison, we noticed the Prabhakar-like non integer approach shows better results than the existing operators in the literature, and graphs are drawn to show the results. Also, obtained the results in a limiting sense such as second grade fluid, Newtonian fluid in fractionalized form as well as Jeffrey and viscous fluid models for classical form from Prabhakar-like non integer Jeffrey fluid model. (C) The Author(s), under exclusive licence to Springer Nature India Private Limited 2024.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Applied and Computational Mathematics

  • ISSN

    2349-5103

  • e-ISSN

    2199-5796

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85193403147