Thermal and Flow Properties of Jeffrey Fluid Through Prabhakar Fractional Approach: Investigating Heat and Mass Transfer with Emphasis on Special Functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255156" target="_blank" >RIV/61989100:27740/24:10255156 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s40819-024-01747-z" target="_blank" >https://link.springer.com/article/10.1007/s40819-024-01747-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40819-024-01747-z" target="_blank" >10.1007/s40819-024-01747-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal and Flow Properties of Jeffrey Fluid Through Prabhakar Fractional Approach: Investigating Heat and Mass Transfer with Emphasis on Special Functions
Popis výsledku v původním jazyce
The core purpose of this work is the investigation, formulation and develop a mathematical model by dint of a new fractional modeling approach namely Prabhakar fractional operator to study the dynamics of Jeffrey fluid flow and heat transfer phenomena. Exact analysis of natural convective flow of the Jeffrey fluid to derive analytical solutions with the non-integer order derivative Prabhakar fractional operator with non-singular type kernel alongwith application of generalized laws namely Fick's and Fourier's are reported here. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fluid flow is elaborated near an infinitely vertical plate with characteristics velocity u0. The modeling of the considered problem is done in terms of the partial differential equations together with generalized boundary conditions. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform is operated on the fractional system of equations and results are presented in series form and also presented the solution in the form of special functions. The pertinent parameter's influence such as α, Pr, β, Gm, Sc, γ, Gr on the fluid flow is brought under consideration to reveal the interesting results. In comparison, we noticed the Prabhakar-like non integer approach shows better results than the existing operators in the literature, and graphs are drawn to show the results. Also, obtained the results in a limiting sense such as second grade fluid, Newtonian fluid in fractionalized form as well as Jeffrey and viscous fluid models for classical form from Prabhakar-like non integer Jeffrey fluid model. (C) The Author(s), under exclusive licence to Springer Nature India Private Limited 2024.
Název v anglickém jazyce
Thermal and Flow Properties of Jeffrey Fluid Through Prabhakar Fractional Approach: Investigating Heat and Mass Transfer with Emphasis on Special Functions
Popis výsledku anglicky
The core purpose of this work is the investigation, formulation and develop a mathematical model by dint of a new fractional modeling approach namely Prabhakar fractional operator to study the dynamics of Jeffrey fluid flow and heat transfer phenomena. Exact analysis of natural convective flow of the Jeffrey fluid to derive analytical solutions with the non-integer order derivative Prabhakar fractional operator with non-singular type kernel alongwith application of generalized laws namely Fick's and Fourier's are reported here. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fluid flow is elaborated near an infinitely vertical plate with characteristics velocity u0. The modeling of the considered problem is done in terms of the partial differential equations together with generalized boundary conditions. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform is operated on the fractional system of equations and results are presented in series form and also presented the solution in the form of special functions. The pertinent parameter's influence such as α, Pr, β, Gm, Sc, γ, Gr on the fluid flow is brought under consideration to reveal the interesting results. In comparison, we noticed the Prabhakar-like non integer approach shows better results than the existing operators in the literature, and graphs are drawn to show the results. Also, obtained the results in a limiting sense such as second grade fluid, Newtonian fluid in fractionalized form as well as Jeffrey and viscous fluid models for classical form from Prabhakar-like non integer Jeffrey fluid model. (C) The Author(s), under exclusive licence to Springer Nature India Private Limited 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied and Computational Mathematics
ISSN
2349-5103
e-ISSN
2199-5796
Svazek periodika
10
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85193403147