Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Special function form solutions of multi-parameter generalized Mittag-Leffler kernel based bio-heat fractional order model subject to thermal memory shocks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254519" target="_blank" >RIV/61989100:27740/24:10254519 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299106" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299106</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0299106" target="_blank" >10.1371/journal.pone.0299106</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Special function form solutions of multi-parameter generalized Mittag-Leffler kernel based bio-heat fractional order model subject to thermal memory shocks

  • Popis výsledku v původním jazyce

    The primary objective of this research is to develop a mathematical model, analyze the dynamic occurrence of thermal shock and exploration of how thermal memory with moving line impact of heat transfer within biological tissues. An extended version of the Pennes equation as its foundational framework, a new fractional modelling approach called the Prabhakar fractional operator to investigate and a novel time-fractional interpretation of Fourier&apos;s law that incorporates its historical behaviour. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fractional formulation of heat flow, achieved through a generalized fractional operator with a non-singular type kernel, enables the representation of the finite propagation speed of heat waves. Furthermore, the dynamics of thermal source continually generates a linear thermal shock at predefined locations within the tissue. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform (LT) is operated on the fractional system of equations and results are presented in series form and also expressed the solution in the form of special functions. The article derives analytical solutions for the heat transfer phenomena of both the generalized model, in the Laplace domain, and the ordinary model in the real domain, employing Laplace inverse transformation. The pertinent parameter&apos;s influence, such as α, β, γ, a0, b0, to gain insights into the impact of the thermal memory parameter on heat transfer, is brought under consideration to reveal the interesting results with graphical representations of the findings.

  • Název v anglickém jazyce

    Special function form solutions of multi-parameter generalized Mittag-Leffler kernel based bio-heat fractional order model subject to thermal memory shocks

  • Popis výsledku anglicky

    The primary objective of this research is to develop a mathematical model, analyze the dynamic occurrence of thermal shock and exploration of how thermal memory with moving line impact of heat transfer within biological tissues. An extended version of the Pennes equation as its foundational framework, a new fractional modelling approach called the Prabhakar fractional operator to investigate and a novel time-fractional interpretation of Fourier&apos;s law that incorporates its historical behaviour. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fractional formulation of heat flow, achieved through a generalized fractional operator with a non-singular type kernel, enables the representation of the finite propagation speed of heat waves. Furthermore, the dynamics of thermal source continually generates a linear thermal shock at predefined locations within the tissue. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform (LT) is operated on the fractional system of equations and results are presented in series form and also expressed the solution in the form of special functions. The article derives analytical solutions for the heat transfer phenomena of both the generalized model, in the Laplace domain, and the ordinary model in the real domain, employing Laplace inverse transformation. The pertinent parameter&apos;s influence, such as α, β, γ, a0, b0, to gain insights into the impact of the thermal memory parameter on heat transfer, is brought under consideration to reveal the interesting results with graphical representations of the findings.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001181701200028

  • EID výsledku v databázi Scopus

    2-s2.0-85187506905