Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Lie symmetry approach to traveling wave solutions, bifurcation, chaos and sensitivity analysis of the geophysical Korteweg-de Vries equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255182" target="_blank" >RIV/61989100:27740/24:10255182 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2666818124001207?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124001207?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.padiff.2024.100734" target="_blank" >10.1016/j.padiff.2024.100734</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Lie symmetry approach to traveling wave solutions, bifurcation, chaos and sensitivity analysis of the geophysical Korteweg-de Vries equation

  • Popis výsledku v původním jazyce

    Strong waves known as tsunamis are caused by earthquakes, landslides, or volcanic eruptions that traverse oceans. This article examines the geophysical Korteweg-de Vries (GPKdV) equation, which controls the propagation of tsunami waves in seas. The study involves exploring symmetry diminution exerted Lie group analysis, examining the properties of the dynamical structure with the help of bifurcation phase pictures, and researching the dynamic demeanor of the perturbed dynamical system utilizing chaos theory. Techniques such as 3D and 2D phase portraits, time series analysis, poincaré maps, looking into the existence of multistability in the autonomous structure under diverse beginning circumstances, lyapunov exponent, and bifurcation diagram are applied to identify chaotic demeanor. Furthermore, the study establishes general forms of solitary wave results, containing periodic, trigonometric, and singular soliton results, by using the unified Riccati equation expansion approach to address the examined problem analytically. These results are visually represented as 2D and 3D graphs with cautiously chosen parameters, along with their accompanying constraint conditions. Moreover, the sensitivity evaluation of the investigated equation is discussed and demonstrated pictorially. The discoveries revealed are intriguing, novel, and potentially helpful in understanding a wide range of physical events in engineering and science.

  • Název v anglickém jazyce

    A Lie symmetry approach to traveling wave solutions, bifurcation, chaos and sensitivity analysis of the geophysical Korteweg-de Vries equation

  • Popis výsledku anglicky

    Strong waves known as tsunamis are caused by earthquakes, landslides, or volcanic eruptions that traverse oceans. This article examines the geophysical Korteweg-de Vries (GPKdV) equation, which controls the propagation of tsunami waves in seas. The study involves exploring symmetry diminution exerted Lie group analysis, examining the properties of the dynamical structure with the help of bifurcation phase pictures, and researching the dynamic demeanor of the perturbed dynamical system utilizing chaos theory. Techniques such as 3D and 2D phase portraits, time series analysis, poincaré maps, looking into the existence of multistability in the autonomous structure under diverse beginning circumstances, lyapunov exponent, and bifurcation diagram are applied to identify chaotic demeanor. Furthermore, the study establishes general forms of solitary wave results, containing periodic, trigonometric, and singular soliton results, by using the unified Riccati equation expansion approach to address the examined problem analytically. These results are visually represented as 2D and 3D graphs with cautiously chosen parameters, along with their accompanying constraint conditions. Moreover, the sensitivity evaluation of the investigated equation is discussed and demonstrated pictorially. The discoveries revealed are intriguing, novel, and potentially helpful in understanding a wide range of physical events in engineering and science.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Partial Differential Equations in Applied Mathematics

  • ISSN

    2666-8181

  • e-ISSN

    2666-8181

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85194382026