A Lie symmetry approach to traveling wave solutions, bifurcation, chaos and sensitivity analysis of the geophysical Korteweg-de Vries equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255182" target="_blank" >RIV/61989100:27740/24:10255182 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124001207?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124001207?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100734" target="_blank" >10.1016/j.padiff.2024.100734</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Lie symmetry approach to traveling wave solutions, bifurcation, chaos and sensitivity analysis of the geophysical Korteweg-de Vries equation
Popis výsledku v původním jazyce
Strong waves known as tsunamis are caused by earthquakes, landslides, or volcanic eruptions that traverse oceans. This article examines the geophysical Korteweg-de Vries (GPKdV) equation, which controls the propagation of tsunami waves in seas. The study involves exploring symmetry diminution exerted Lie group analysis, examining the properties of the dynamical structure with the help of bifurcation phase pictures, and researching the dynamic demeanor of the perturbed dynamical system utilizing chaos theory. Techniques such as 3D and 2D phase portraits, time series analysis, poincaré maps, looking into the existence of multistability in the autonomous structure under diverse beginning circumstances, lyapunov exponent, and bifurcation diagram are applied to identify chaotic demeanor. Furthermore, the study establishes general forms of solitary wave results, containing periodic, trigonometric, and singular soliton results, by using the unified Riccati equation expansion approach to address the examined problem analytically. These results are visually represented as 2D and 3D graphs with cautiously chosen parameters, along with their accompanying constraint conditions. Moreover, the sensitivity evaluation of the investigated equation is discussed and demonstrated pictorially. The discoveries revealed are intriguing, novel, and potentially helpful in understanding a wide range of physical events in engineering and science.
Název v anglickém jazyce
A Lie symmetry approach to traveling wave solutions, bifurcation, chaos and sensitivity analysis of the geophysical Korteweg-de Vries equation
Popis výsledku anglicky
Strong waves known as tsunamis are caused by earthquakes, landslides, or volcanic eruptions that traverse oceans. This article examines the geophysical Korteweg-de Vries (GPKdV) equation, which controls the propagation of tsunami waves in seas. The study involves exploring symmetry diminution exerted Lie group analysis, examining the properties of the dynamical structure with the help of bifurcation phase pictures, and researching the dynamic demeanor of the perturbed dynamical system utilizing chaos theory. Techniques such as 3D and 2D phase portraits, time series analysis, poincaré maps, looking into the existence of multistability in the autonomous structure under diverse beginning circumstances, lyapunov exponent, and bifurcation diagram are applied to identify chaotic demeanor. Furthermore, the study establishes general forms of solitary wave results, containing periodic, trigonometric, and singular soliton results, by using the unified Riccati equation expansion approach to address the examined problem analytically. These results are visually represented as 2D and 3D graphs with cautiously chosen parameters, along with their accompanying constraint conditions. Moreover, the sensitivity evaluation of the investigated equation is discussed and demonstrated pictorially. The discoveries revealed are intriguing, novel, and potentially helpful in understanding a wide range of physical events in engineering and science.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
10
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194382026