Signature of conservation laws and solitary wave solution with different dynamics in Thomas-Fermi plasma: Lie theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255707" target="_blank" >RIV/61989100:27740/24:10255707 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124003097#d1e1528" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124003097#d1e1528</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100923" target="_blank" >10.1016/j.padiff.2024.100923</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Signature of conservation laws and solitary wave solution with different dynamics in Thomas-Fermi plasma: Lie theory
Popis výsledku v původním jazyce
We propose a Lie group method to discuss the modified KP equation appearing in Thomas-Fermi (TM) plasma, characterised by cold and hot electrons. The Lie method facilitates the identification of similarity reductions, infinitesimal symmetries, group-invariant solutions, and novel analytical solutions for nonlinear models. The similarity reduction method is carried out to transform the nonlinear partial differential equations (NLPDE) into the nonlinear ordinary differential equations (NLODE). This study focuses on solitary wave profiles due to their usefulness in various engineering applications, including monitoring public transportation systems, managing coastlines, and mitigating disaster risks. It also addresses the conservation laws associated with the modified KP equation. The generalised auxiliary equation (GAEM) scheme is used to compute the new solitary wave patterns of the modified KP equation, which explains the dynamics of nonlinear waves in Thomas-Fermi plasma. The idea of nonlinear self-adjointness is used to compute the conservation laws of the examined model. The graphical behaviour of some solutions is represented by adjusting the suitable value of the parameters involved. (C) 2024 The Authors
Název v anglickém jazyce
Signature of conservation laws and solitary wave solution with different dynamics in Thomas-Fermi plasma: Lie theory
Popis výsledku anglicky
We propose a Lie group method to discuss the modified KP equation appearing in Thomas-Fermi (TM) plasma, characterised by cold and hot electrons. The Lie method facilitates the identification of similarity reductions, infinitesimal symmetries, group-invariant solutions, and novel analytical solutions for nonlinear models. The similarity reduction method is carried out to transform the nonlinear partial differential equations (NLPDE) into the nonlinear ordinary differential equations (NLODE). This study focuses on solitary wave profiles due to their usefulness in various engineering applications, including monitoring public transportation systems, managing coastlines, and mitigating disaster risks. It also addresses the conservation laws associated with the modified KP equation. The generalised auxiliary equation (GAEM) scheme is used to compute the new solitary wave patterns of the modified KP equation, which explains the dynamics of nonlinear waves in Thomas-Fermi plasma. The idea of nonlinear self-adjointness is used to compute the conservation laws of the examined model. The graphical behaviour of some solutions is represented by adjusting the suitable value of the parameters involved. (C) 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
12
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85203983335