Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modeling the dynamics of dengue fever with double susceptibility and optimal control strategies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255708" target="_blank" >RIV/61989100:27740/24:10255708 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s40808-024-02152-7#citeas" target="_blank" >https://link.springer.com/article/10.1007/s40808-024-02152-7#citeas</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40808-024-02152-7" target="_blank" >10.1007/s40808-024-02152-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modeling the dynamics of dengue fever with double susceptibility and optimal control strategies

  • Popis výsledku v původním jazyce

    Dengue fever poses a global health challenge and has a substantial economic impact on the world economy. Various epidemic models have been studied to gain a better understanding of transmission patterns and formulate efficient control strategies for this global infection. In this paper, we investigate the transmission dynamics of dengue fever using a novel mathematical model with double susceptibility and partial immunity. Both symptomatic and asymptomatic infections are considered in the model formulation. The dynamics of the model are evaluated through the basic reproduction number R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document}. We have proved that the model is stable at the disease-free equilibrium for R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} is less than 1, and it is globally asymptotically stable under certain conditions. Furthermore, we demonstrate that the infection will persist uniformly in the system if R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} exceeds 1. The most sensitive factors influencing the infection incidence are evaluated using the well-known normalized sensitivity analysis. We found that the biting rate and birth rate of infected mosquitoes substantially contribute to dengue infection. Optimal control theory is then used to obtain the best control strategy for eradicating the infection. For this purpose, we incorporate three time-dependent control variables, namely, larvicide mosquito strategies, preventive measures to minimize human-mosquito contacts, and proper treatment or medication. The model is simulated by considering four scenarios that combine the different control variables. These results indicate that the implementation of all control measures simultaneously is necessary for the early eradication of infection in both populations.

  • Název v anglickém jazyce

    Modeling the dynamics of dengue fever with double susceptibility and optimal control strategies

  • Popis výsledku anglicky

    Dengue fever poses a global health challenge and has a substantial economic impact on the world economy. Various epidemic models have been studied to gain a better understanding of transmission patterns and formulate efficient control strategies for this global infection. In this paper, we investigate the transmission dynamics of dengue fever using a novel mathematical model with double susceptibility and partial immunity. Both symptomatic and asymptomatic infections are considered in the model formulation. The dynamics of the model are evaluated through the basic reproduction number R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document}. We have proved that the model is stable at the disease-free equilibrium for R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} is less than 1, and it is globally asymptotically stable under certain conditions. Furthermore, we demonstrate that the infection will persist uniformly in the system if R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} exceeds 1. The most sensitive factors influencing the infection incidence are evaluated using the well-known normalized sensitivity analysis. We found that the biting rate and birth rate of infected mosquitoes substantially contribute to dengue infection. Optimal control theory is then used to obtain the best control strategy for eradicating the infection. For this purpose, we incorporate three time-dependent control variables, namely, larvicide mosquito strategies, preventive measures to minimize human-mosquito contacts, and proper treatment or medication. The model is simulated by considering four scenarios that combine the different control variables. These results indicate that the implementation of all control measures simultaneously is necessary for the early eradication of infection in both populations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Modeling Earth Systems and Environment

  • ISSN

    2363-6203

  • e-ISSN

    2363-6211

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    21

  • Strana od-do

    7185-7205

  • Kód UT WoS článku

    001322460500001

  • EID výsledku v databázi Scopus

    2-s2.0-85205355534