Modeling the dynamics of dengue fever with double susceptibility and optimal control strategies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255708" target="_blank" >RIV/61989100:27740/24:10255708 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s40808-024-02152-7#citeas" target="_blank" >https://link.springer.com/article/10.1007/s40808-024-02152-7#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40808-024-02152-7" target="_blank" >10.1007/s40808-024-02152-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling the dynamics of dengue fever with double susceptibility and optimal control strategies
Popis výsledku v původním jazyce
Dengue fever poses a global health challenge and has a substantial economic impact on the world economy. Various epidemic models have been studied to gain a better understanding of transmission patterns and formulate efficient control strategies for this global infection. In this paper, we investigate the transmission dynamics of dengue fever using a novel mathematical model with double susceptibility and partial immunity. Both symptomatic and asymptomatic infections are considered in the model formulation. The dynamics of the model are evaluated through the basic reproduction number R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document}. We have proved that the model is stable at the disease-free equilibrium for R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} is less than 1, and it is globally asymptotically stable under certain conditions. Furthermore, we demonstrate that the infection will persist uniformly in the system if R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} exceeds 1. The most sensitive factors influencing the infection incidence are evaluated using the well-known normalized sensitivity analysis. We found that the biting rate and birth rate of infected mosquitoes substantially contribute to dengue infection. Optimal control theory is then used to obtain the best control strategy for eradicating the infection. For this purpose, we incorporate three time-dependent control variables, namely, larvicide mosquito strategies, preventive measures to minimize human-mosquito contacts, and proper treatment or medication. The model is simulated by considering four scenarios that combine the different control variables. These results indicate that the implementation of all control measures simultaneously is necessary for the early eradication of infection in both populations.
Název v anglickém jazyce
Modeling the dynamics of dengue fever with double susceptibility and optimal control strategies
Popis výsledku anglicky
Dengue fever poses a global health challenge and has a substantial economic impact on the world economy. Various epidemic models have been studied to gain a better understanding of transmission patterns and formulate efficient control strategies for this global infection. In this paper, we investigate the transmission dynamics of dengue fever using a novel mathematical model with double susceptibility and partial immunity. Both symptomatic and asymptomatic infections are considered in the model formulation. The dynamics of the model are evaluated through the basic reproduction number R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document}. We have proved that the model is stable at the disease-free equilibrium for R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} is less than 1, and it is globally asymptotically stable under certain conditions. Furthermore, we demonstrate that the infection will persist uniformly in the system if R0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$mathcal {R}_0$$end{document} exceeds 1. The most sensitive factors influencing the infection incidence are evaluated using the well-known normalized sensitivity analysis. We found that the biting rate and birth rate of infected mosquitoes substantially contribute to dengue infection. Optimal control theory is then used to obtain the best control strategy for eradicating the infection. For this purpose, we incorporate three time-dependent control variables, namely, larvicide mosquito strategies, preventive measures to minimize human-mosquito contacts, and proper treatment or medication. The model is simulated by considering four scenarios that combine the different control variables. These results indicate that the implementation of all control measures simultaneously is necessary for the early eradication of infection in both populations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modeling Earth Systems and Environment
ISSN
2363-6203
e-ISSN
2363-6211
Svazek periodika
10
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
7185-7205
Kód UT WoS článku
001322460500001
EID výsledku v databázi Scopus
2-s2.0-85205355534