Analyzing optical soliton solutions in Kairat-X equation via new auxiliary equation method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255724" target="_blank" >RIV/61989100:27740/24:10255724 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11082-024-07197-7" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-07197-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11082-024-07197-7" target="_blank" >10.1007/s11082-024-07197-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing optical soliton solutions in Kairat-X equation via new auxiliary equation method
Popis výsledku v původním jazyce
The paper introduce a novel auxiliary equation method for the successful derivation of traveling wave solutions for the non-linear Kairat-X (K-X) equation. Along with other novel results, soliton, singular, triangular periodic, and doubly periodic topological solutions are among the solutions obtained. The study revisits the concept of optical solitary waves, enhancing our understanding of the model. Previous studies have already derived analytical solutions using diverse approaches, contributing to the discovery of new soliton solutions within this framework. These solutions are characterized through three-dimensional, contour plot, and two-dimensional profile analyses. Additionally, the impact of time on the propagation of wave patterns is explored. The outcomes show how well our suggested approach works to solve non-linear evolution equations by producing fresh, more thorough solutions, making it a powerful mathematical tool for doing so. Through this article, we elucidate how leveraging NAEM with the Kairat-X equation can lead to optimized optical systems, improved data transmission rates, and the evolution of nonlinear optics towards more efficient and reliable communication technologies. (C) The Author(s) 2024.
Název v anglickém jazyce
Analyzing optical soliton solutions in Kairat-X equation via new auxiliary equation method
Popis výsledku anglicky
The paper introduce a novel auxiliary equation method for the successful derivation of traveling wave solutions for the non-linear Kairat-X (K-X) equation. Along with other novel results, soliton, singular, triangular periodic, and doubly periodic topological solutions are among the solutions obtained. The study revisits the concept of optical solitary waves, enhancing our understanding of the model. Previous studies have already derived analytical solutions using diverse approaches, contributing to the discovery of new soliton solutions within this framework. These solutions are characterized through three-dimensional, contour plot, and two-dimensional profile analyses. Additionally, the impact of time on the propagation of wave patterns is explored. The outcomes show how well our suggested approach works to solve non-linear evolution equations by producing fresh, more thorough solutions, making it a powerful mathematical tool for doing so. Through this article, we elucidate how leveraging NAEM with the Kairat-X equation can lead to optimized optical systems, improved data transmission rates, and the evolution of nonlinear optics towards more efficient and reliable communication technologies. (C) The Author(s) 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optical And Quantum Electronics
ISSN
0306-8919
e-ISSN
1572-817X
Svazek periodika
56
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001275451000020
EID výsledku v databázi Scopus
2-s2.0-85199034280