Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of the New Mapping Method to Complex Three Coupled Maccari's System Possessing M-Fractional Derivative

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255726" target="_blank" >RIV/61989100:27740/24:10255726 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dergipark.org.tr/en/pub/chaos/issue/86422/1414782" target="_blank" >https://dergipark.org.tr/en/pub/chaos/issue/86422/1414782</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.51537/chaos.1414782" target="_blank" >10.51537/chaos.1414782</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of the New Mapping Method to Complex Three Coupled Maccari's System Possessing M-Fractional Derivative

  • Popis výsledku v původním jazyce

    In this academic investigation, an innovative mapping approach is applied to complex three coupled Maccari&apos;s system to unveil novel soliton solutions. This is achieved through the utilization of M-Truncated fractional derivative with employing the new mapping method and computer algebraic syatem (CAS) such as Maple. The derived solutions in the form of hyperbolic and trigonometric functions. Our study elucidates a variety of soliton solutions such as periodic, singular, dark, kink, bright, dark-bright solitons solutions. To facilitate comprehension, with certain solutions being visually depicted through 2-dimensional, contour, 3-dimensional, and phase plots depicting bifurcation characteristics utilizing Maple software. Furthermore, the incorporation of M-Truncated derivative enables a more extensive exploration of solution patterns. Our study establishes a connection between computer science and soliton physics, emphasizing the pivotal role of soliton phenomena in advancing simulations and computational modelling. Analytical solutions are subsequently generated through the application of the new mapping method. Following this, a thorough examination of the dynamic nature of the equation is conducted from various perspectives. In essence, understanding the dynamic characteristics of systems is of great importance for predicting outcomes and advancing new technologies. This research significantly contributes to the convergence of theoretical mathematics and applied computer science, emphasizing the crucial role of solitons in scientific disciplines.

  • Název v anglickém jazyce

    Application of the New Mapping Method to Complex Three Coupled Maccari's System Possessing M-Fractional Derivative

  • Popis výsledku anglicky

    In this academic investigation, an innovative mapping approach is applied to complex three coupled Maccari&apos;s system to unveil novel soliton solutions. This is achieved through the utilization of M-Truncated fractional derivative with employing the new mapping method and computer algebraic syatem (CAS) such as Maple. The derived solutions in the form of hyperbolic and trigonometric functions. Our study elucidates a variety of soliton solutions such as periodic, singular, dark, kink, bright, dark-bright solitons solutions. To facilitate comprehension, with certain solutions being visually depicted through 2-dimensional, contour, 3-dimensional, and phase plots depicting bifurcation characteristics utilizing Maple software. Furthermore, the incorporation of M-Truncated derivative enables a more extensive exploration of solution patterns. Our study establishes a connection between computer science and soliton physics, emphasizing the pivotal role of soliton phenomena in advancing simulations and computational modelling. Analytical solutions are subsequently generated through the application of the new mapping method. Following this, a thorough examination of the dynamic nature of the equation is conducted from various perspectives. In essence, understanding the dynamic characteristics of systems is of great importance for predicting outcomes and advancing new technologies. This research significantly contributes to the convergence of theoretical mathematics and applied computer science, emphasizing the crucial role of solitons in scientific disciplines.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos, Solitons &amp; Fractals

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    180-191

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85199019476