Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255819" target="_blank" >RIV/61989100:27740/24:10255819 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11085-024-10321-3" target="_blank" >https://link.springer.com/article/10.1007/s11085-024-10321-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11085-024-10321-3" target="_blank" >10.1007/s11085-024-10321-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques
Popis výsledku v původním jazyce
Analysis of scanning electron microscope (SEM) images is crucial for characterising aluminide diffusion coatings deposited via the slurry route on steels, yet challenging due to various factors like imaging artefacts, noise, and overlapping features such as resin, precipitates, cracks, and pores. This study focuses on determining the thicknesses of the coating layers Fe2Al5 and, if present, FeAl, pore characteristics, and chromium precipitate fractions after the heat treatment that forms the diffusion coating. A deep learning SEM image segmentation model utilising U-Net architecture is proposed. Ground truth data were generated using the trainable Weka segmentation plugin in ImageJ, manually refined for accuracy, and supplemented with synthetic data from Blender 3D software for data augmentation of a limited number of SEM label images. The deep learning model trained on a combination of synthetic and real SEM data achieved mean dice scores of 98.7% +- 0.2 for the Fe2Al5 layer, 82.6% +- 8.1 for pores, and 81.48% +- 3.6 for precipitates when evaluated on manually labelled SEM data. The deep learning procedure was applied to evaluate a series of SEM images of diffusion coatings obtained with three different slurry compositions. The evaluation revealed that using a slurry without a rheology modifier may lead to a thicker partial Fe2Al5 layer that is formed by inward diffusion. The relation between the outward and inward diffusion Fe2Al5 layers was not affected by the coating thickness. The thinner diffusion coating presents lower pores and chromium precipitate fractions independently of the slurry selected.
Název v anglickém jazyce
Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques
Popis výsledku anglicky
Analysis of scanning electron microscope (SEM) images is crucial for characterising aluminide diffusion coatings deposited via the slurry route on steels, yet challenging due to various factors like imaging artefacts, noise, and overlapping features such as resin, precipitates, cracks, and pores. This study focuses on determining the thicknesses of the coating layers Fe2Al5 and, if present, FeAl, pore characteristics, and chromium precipitate fractions after the heat treatment that forms the diffusion coating. A deep learning SEM image segmentation model utilising U-Net architecture is proposed. Ground truth data were generated using the trainable Weka segmentation plugin in ImageJ, manually refined for accuracy, and supplemented with synthetic data from Blender 3D software for data augmentation of a limited number of SEM label images. The deep learning model trained on a combination of synthetic and real SEM data achieved mean dice scores of 98.7% +- 0.2 for the Fe2Al5 layer, 82.6% +- 8.1 for pores, and 81.48% +- 3.6 for precipitates when evaluated on manually labelled SEM data. The deep learning procedure was applied to evaluate a series of SEM images of diffusion coatings obtained with three different slurry compositions. The evaluation revealed that using a slurry without a rheology modifier may lead to a thicker partial Fe2Al5 layer that is formed by inward diffusion. The relation between the outward and inward diffusion Fe2Al5 layers was not affected by the coating thickness. The thinner diffusion coating presents lower pores and chromium precipitate fractions independently of the slurry selected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
High Temperature Corrosion of Materials
ISSN
2731-8397
e-ISSN
2731-8400
Svazek periodika
101
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1497-1512
Kód UT WoS článku
001342064500001
EID výsledku v databázi Scopus
2-s2.0-85207370113