Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255819" target="_blank" >RIV/61989100:27740/24:10255819 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11085-024-10321-3" target="_blank" >https://link.springer.com/article/10.1007/s11085-024-10321-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11085-024-10321-3" target="_blank" >10.1007/s11085-024-10321-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques

  • Popis výsledku v původním jazyce

    Analysis of scanning electron microscope (SEM) images is crucial for characterising aluminide diffusion coatings deposited via the slurry route on steels, yet challenging due to various factors like imaging artefacts, noise, and overlapping features such as resin, precipitates, cracks, and pores. This study focuses on determining the thicknesses of the coating layers Fe2Al5 and, if present, FeAl, pore characteristics, and chromium precipitate fractions after the heat treatment that forms the diffusion coating. A deep learning SEM image segmentation model utilising U-Net architecture is proposed. Ground truth data were generated using the trainable Weka segmentation plugin in ImageJ, manually refined for accuracy, and supplemented with synthetic data from Blender 3D software for data augmentation of a limited number of SEM label images. The deep learning model trained on a combination of synthetic and real SEM data achieved mean dice scores of 98.7% +- 0.2 for the Fe2Al5 layer, 82.6% +- 8.1 for pores, and 81.48% +- 3.6 for precipitates when evaluated on manually labelled SEM data. The deep learning procedure was applied to evaluate a series of SEM images of diffusion coatings obtained with three different slurry compositions. The evaluation revealed that using a slurry without a rheology modifier may lead to a thicker partial Fe2Al5 layer that is formed by inward diffusion. The relation between the outward and inward diffusion Fe2Al5 layers was not affected by the coating thickness. The thinner diffusion coating presents lower pores and chromium precipitate fractions independently of the slurry selected.

  • Název v anglickém jazyce

    Segmentation and Metallographic Evaluation of Aluminium Slurry Coatings Using Machine Learning Techniques

  • Popis výsledku anglicky

    Analysis of scanning electron microscope (SEM) images is crucial for characterising aluminide diffusion coatings deposited via the slurry route on steels, yet challenging due to various factors like imaging artefacts, noise, and overlapping features such as resin, precipitates, cracks, and pores. This study focuses on determining the thicknesses of the coating layers Fe2Al5 and, if present, FeAl, pore characteristics, and chromium precipitate fractions after the heat treatment that forms the diffusion coating. A deep learning SEM image segmentation model utilising U-Net architecture is proposed. Ground truth data were generated using the trainable Weka segmentation plugin in ImageJ, manually refined for accuracy, and supplemented with synthetic data from Blender 3D software for data augmentation of a limited number of SEM label images. The deep learning model trained on a combination of synthetic and real SEM data achieved mean dice scores of 98.7% +- 0.2 for the Fe2Al5 layer, 82.6% +- 8.1 for pores, and 81.48% +- 3.6 for precipitates when evaluated on manually labelled SEM data. The deep learning procedure was applied to evaluate a series of SEM images of diffusion coatings obtained with three different slurry compositions. The evaluation revealed that using a slurry without a rheology modifier may lead to a thicker partial Fe2Al5 layer that is formed by inward diffusion. The relation between the outward and inward diffusion Fe2Al5 layers was not affected by the coating thickness. The thinner diffusion coating presents lower pores and chromium precipitate fractions independently of the slurry selected.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20506 - Coating and films

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    High Temperature Corrosion of Materials

  • ISSN

    2731-8397

  • e-ISSN

    2731-8400

  • Svazek periodika

    101

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    1497-1512

  • Kód UT WoS článku

    001342064500001

  • EID výsledku v databázi Scopus

    2-s2.0-85207370113