Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Heat transport analysis of three-dimensional magnetohydrodynamics nanofluid flow through an extending sheet with thermal radiation and heat source/sink

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256387" target="_blank" >RIV/61989100:27740/24:10256387 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2590123024015160?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024015160?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2024.103262" target="_blank" >10.1016/j.rineng.2024.103262</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Heat transport analysis of three-dimensional magnetohydrodynamics nanofluid flow through an extending sheet with thermal radiation and heat source/sink

  • Popis výsledku v původním jazyce

    Regarding heat transformation efficiency, the hybrid nanofluid performs superior to the nanofluid. The majority of hybrid nanofluid uses are in the industrial sector, producing solar energy, cooling generators, and vehicle heat transformation. Heat transfer and nanofluid velocity are the two most crucial transport properties that must be evaluated before the first and second thermodynamics equations are applied to nanoscale fluids. The objective of this work is to investigate the characteristics of transmission of heat of magnetohydrodynamic (MHD) nanofluid (Ag/H2O)and hybrid nanofluid (Ag + Al2O3/H2O)flow on a linear extensible sheet when magnetic forces are present. Similarity variables are applied to transform a set of nonlinear dimensionless partial-differential equations to collection of ordinary-differential equations. The non-analytical solutions of these transformed equations are found utilizing the MATLAB mathematical program&apos;s bvp4c function. The impression of various physical attributes along skin friction coefficients and properties of heat transmission are analyzed. The behavior of key parameters, including surface stretching ratio, rotational and magnetic effects, for temperature and velocity, is shown using graphs and tables. In conclusion, hybrid nanofluids, which comprise silver and aluminum oxide nanoparticles dispersed in water, outperform silver-water nanofluids by around 10-15 % under magnetohydrodynamic (MHD). The higher thermal conductivity of these hybrid nanofluids allows for better heat dissipation, making them an appealing option for applications that need optimal thermal management in the presence of magnetic fields.

  • Název v anglickém jazyce

    Heat transport analysis of three-dimensional magnetohydrodynamics nanofluid flow through an extending sheet with thermal radiation and heat source/sink

  • Popis výsledku anglicky

    Regarding heat transformation efficiency, the hybrid nanofluid performs superior to the nanofluid. The majority of hybrid nanofluid uses are in the industrial sector, producing solar energy, cooling generators, and vehicle heat transformation. Heat transfer and nanofluid velocity are the two most crucial transport properties that must be evaluated before the first and second thermodynamics equations are applied to nanoscale fluids. The objective of this work is to investigate the characteristics of transmission of heat of magnetohydrodynamic (MHD) nanofluid (Ag/H2O)and hybrid nanofluid (Ag + Al2O3/H2O)flow on a linear extensible sheet when magnetic forces are present. Similarity variables are applied to transform a set of nonlinear dimensionless partial-differential equations to collection of ordinary-differential equations. The non-analytical solutions of these transformed equations are found utilizing the MATLAB mathematical program&apos;s bvp4c function. The impression of various physical attributes along skin friction coefficients and properties of heat transmission are analyzed. The behavior of key parameters, including surface stretching ratio, rotational and magnetic effects, for temperature and velocity, is shown using graphs and tables. In conclusion, hybrid nanofluids, which comprise silver and aluminum oxide nanoparticles dispersed in water, outperform silver-water nanofluids by around 10-15 % under magnetohydrodynamic (MHD). The higher thermal conductivity of these hybrid nanofluids allows for better heat dissipation, making them an appealing option for applications that need optimal thermal management in the presence of magnetic fields.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21100 - Other engineering and technologies

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

    2590-1230

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001366803900001

  • EID výsledku v databázi Scopus