Introducing the new arcsine-generator distribution family: An in-depth exploration with an illustrative example of the inverse weibull distribution for analyzing healthcare industry data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256402" target="_blank" >RIV/61989100:27740/24:10256402 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1687850724000633" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1687850724000633</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jrras.2024.100879" target="_blank" >10.1016/j.jrras.2024.100879</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Introducing the new arcsine-generator distribution family: An in-depth exploration with an illustrative example of the inverse weibull distribution for analyzing healthcare industry data
Popis výsledku v původním jazyce
The study is about a novel Arcsin-function based generator of new families of distributions. We chose the inverse Weibull distribution as the reference distribution to see if the generator could be employed. This generator helps for developing a distribution called the novel Arcsin inverse Weibull. The main features of the suggested distribution have been taken into account. Some of the indicators used in this class include the density function, complete and incomplete moments, average deviation, and aging indicators. The model's parameters are determined using the maximum likelihood method in both simulations and data analysis. The effectiveness of the suggested model in the healthcare sector is demonstrated by analyzing five sets of data, revealing its superior fit compared to the traditional inverse sine model, which is associated with the inverse Weibull model.
Název v anglickém jazyce
Introducing the new arcsine-generator distribution family: An in-depth exploration with an illustrative example of the inverse weibull distribution for analyzing healthcare industry data
Popis výsledku anglicky
The study is about a novel Arcsin-function based generator of new families of distributions. We chose the inverse Weibull distribution as the reference distribution to see if the generator could be employed. This generator helps for developing a distribution called the novel Arcsin inverse Weibull. The main features of the suggested distribution have been taken into account. Some of the indicators used in this class include the density function, complete and incomplete moments, average deviation, and aging indicators. The model's parameters are determined using the maximum likelihood method in both simulations and data analysis. The effectiveness of the suggested model in the healthcare sector is demonstrated by analyzing five sets of data, revealing its superior fit compared to the traditional inverse sine model, which is associated with the inverse Weibull model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Radiation Research and Applied Sciences
ISSN
1687-8507
e-ISSN
1687-8507
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
001290968400001
EID výsledku v databázi Scopus
—