A novel technique using integral transforms and residual functions for nonlinear partial fractional differential equations involving Caputo derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256733" target="_blank" >RIV/61989100:27740/24:10256733 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313860" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313860</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0313860" target="_blank" >10.1371/journal.pone.0313860</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel technique using integral transforms and residual functions for nonlinear partial fractional differential equations involving Caputo derivatives
Popis výsledku v původním jazyce
Fractional nonlinear partial differential equations are used in many scientific fields to model various processes, although most of these equations lack closed-form solutions. For this reason, methods for approximating solutions that occasionally yield closed-form solutions are crucial for solving these equations. This study introduces a novel technique that combines the residual function and a modified fractional power series with the Elzaki transform to solve various nonlinear problems within the Caputo derivative framework. The accuracy and effectiveness of our approach are validated through analyses of absolute, relative, and residual errors. We utilize the limit principle at zero to identify the coefficients of the series solution terms, while other methods, including variational iteration, homotopy perturbation, and Adomian, depend on integration. In contrast, the residual power series method uses differentiation, and both approaches encounter difficulties in fractional contexts. Furthermore, the effectiveness of our approach in addressing nonlinear problems without relying on Adomian and He polynomials enhances its superiority over various approximate series solution techniques.
Název v anglickém jazyce
A novel technique using integral transforms and residual functions for nonlinear partial fractional differential equations involving Caputo derivatives
Popis výsledku anglicky
Fractional nonlinear partial differential equations are used in many scientific fields to model various processes, although most of these equations lack closed-form solutions. For this reason, methods for approximating solutions that occasionally yield closed-form solutions are crucial for solving these equations. This study introduces a novel technique that combines the residual function and a modified fractional power series with the Elzaki transform to solve various nonlinear problems within the Caputo derivative framework. The accuracy and effectiveness of our approach are validated through analyses of absolute, relative, and residual errors. We utilize the limit principle at zero to identify the coefficients of the series solution terms, while other methods, including variational iteration, homotopy perturbation, and Adomian, depend on integration. In contrast, the residual power series method uses differentiation, and both approaches encounter difficulties in fractional contexts. Furthermore, the effectiveness of our approach in addressing nonlinear problems without relying on Adomian and He polynomials enhances its superiority over various approximate series solution techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
19
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
—
Kód UT WoS článku
001397531300039
EID výsledku v databázi Scopus
2-s2.0-85213374604